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Introduction 
The word ‘diagnostics’ originally referred to the identification of human health problems 
resulting the ‘diagnosis’, the evaluation of the actual health status of a human. Technical 
diagnostics aims the diagnosis of technical objects (machines, parts) to support engineering 
decisions (reparation or change of a part, process improvement). 

Fault is the abnormal behaviour of a machine (state), failure is the termination of the ability 
to perform a required function (event), failure mode is an observable phenomenon caused 
by a failure. Root cause failure analysis is an examination aiming to identify the causes of a 
failure mode.  

The first step of condition monitoring is to find connection between failures and 
measurable symptoms generated by the failures of interest. Since the symptoms are very 
different in appearance (vibration, sound, heat, wear particles in oil), technical diagnostics 
has several fields using special measuring systems as vibration monitoring, acoustics, 
thermography, oil analysis, etc. 

In the field of vibration monitoring symptoms can be detected with the analysis of the 
sampled vibration signal. (In simple everyday situations the diagnosis can be based on the 
human senses – vision, hearing and touch first of all – but their accuracy and range is not 
enough for diagnosis of modern machineries.) Some symptoms appear in the so-called 
time-domain (e.g. vibration velocity vs. time function) others can be revealed from the 
frequency spectrum (frequency-domain analysis). 
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The basic tool for vibration analysis, from the beginning, is the Fourier analysis. Several 
mechanical failures of rotating parts generate periodic, nearly harmonic vibrations. Such 
failures, for example, are unbalance, angle or shift problems of couplings, looseness, 
misalignment of shafts, bended shafts. 

The generated vibrations have special frequencies depending on the rotational speed and 
the geometry of the rotating component. Special patterns containing a group of lines in the 
frequency spectrum belong to the majority of failures. Thus, in many cases, pattern 
recognition is required rather than the detection of a certain frequency value. 
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Connecting an accelerometer the superposition of approximately harmonic vibrations 
generated by rotating parts of the machine and other vibrations (beats, noise) can be 
measured. The vibration spectrum provided by the Fourier analysis shows the frequencies 
appearing in the vibration signal and the magnitudes belonging to them. Based on these 
data the problematic components and the severity of the failures can be identified. 
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Another type of failures causes so-called shock pulses (transient vibrations) rather than 
periodic vibrations. The most important examples are bearing and gear failures. Since these 
components are crucial in mechanical engineering, monitoring these parts are important. 
Shock pulses are non-periodic transient waves in the time signal, so Fourier analysis is not 
effective in detection of these parts of the signal. Transient components can be revealed 
using so-called simultaneous time-frequency methods, for instance short time Fourier 
transform or wavelet transform. Shock pulses repeat periodically with a certain magnitude 
and frequency which depend on the geometry and the rotational speed of the machine 
element and are characteristic to the failure. 

 
The aim of this problem book is to introduce some selected topics from the field of vibration 
analysis using a “practical approach”. The level of problems is varying from the basics (e.g. 
properties of sine and cosine functions) to advanced investigations in abstract spaces. 
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The modern methods of technical diagnostics are based on digital measuring and data 
acquisition systems, this is why discrete transformations are in the focus when practical 
industrial problems are to be solved. 

As an example, some functions of the SPM Condition Monitoring System related to the 
frequency spectrum are mentioned. (https://www.spminstrument.com) 

Questions at the end of the chapters are related to the theoretical part and the exercises are 
connected to the practical usage of the methods. From chapter 7 to 12, exercises are related 
to Matlab applications and examples of the official Mathworks homepage 
(https://www.mathworks.com/help/examples.html) are used to present the possible 
methods and solutions for the actual problem.  

https://www.spminstrument.com/
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1st week 
 

1 Trigonometric and Exponential Functions 
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Trigonometric and Exponential Functions 
Signal processing is based on different decompositions of functions. In the classic Fourier 
theory the decomposition is about trigonometric (sin, cos) or complex exponential 
functions. For further use some properties of these functions are overviewed. 

Trigonometric (sin, cos) and exponential functions are defined as power series: 

   𝑧  ∑(−1)𝑛 ∙
1

(2𝑘  1)!

∞

𝑘= 

∙ 𝑧2𝑘+1,   𝑧 ∈ ℂ 

   𝑧  ∑(−1)𝑛 ∙
1

(2𝑘)!

∞

𝑘= 

∙ 𝑧2𝑘 ,   𝑧 ∈ ℂ 

𝐸𝑋𝑃(𝑧)  𝑒𝑧  ∑
1

𝑘!
∙ 𝑧𝑘

∞

𝑘= 

,     𝑧 ∈ ℂ 

Remark  

The real trigonometric and exponential functions are obtained as restrictions to ℝ. 

The so-called Euler formula 

𝑒𝑖∙𝜑       𝑖 ∙     ,      ∈ ℝ 

comes directly from the definitions. 
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Using the properties of the exponential functions we have that for an arbitrary complex 

number 𝑧  𝜎  𝑠 ∙ 𝑖, (𝜎, 𝑠 ∈ ℝ) 

𝑒𝑧  𝑒𝜎+𝑠∙𝑖  𝑒𝜎 ∙ 𝑒𝑠∙𝑖  𝑒𝜎 ∙ (   𝑠  𝑖 ∙    𝑠) 

holds. 

Corollary 

Values of the complex exponential function can be calculated from values of real 

trigonometric and exponential functions. 

Since 𝑒𝜎 is a positive real number and |𝑒𝑠∙𝑖|  |   𝑠  𝑖 ∙    𝑠|  √   2 𝑠     2 𝑠  1, in 

formula 

𝑒𝑧  𝑒𝜎 ∙ 𝑒𝑠∙𝑖 

𝑟  𝑒𝜎 is the norm and 𝑠 is the argument (’angle’) of 𝑒𝑧. 
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Function 

 → 𝑒𝑖∙2𝜋∙𝑡,    ∈ ℝ 

has an important role in Fourier series and Fourier transforms. 

Function  → 𝑒𝑖∙2𝜋∙𝑡,  ∈ ℝ is 1-periodic and the range of  → 𝑒𝑖∙2𝜋∙𝑡,  ∈ [0,1] is the unit 

circle of the complex plane. 
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The period of function  → 𝑒𝑖∙𝑓∙2𝜋∙𝑡 is 𝑇  
1

𝑓
. 

Considering  → 𝑒𝑖∙𝑓∙2𝜋∙𝑡 as a “position-time function” in the complex plane and using the 

SI units we have that 𝑇  [𝑠], 𝑓  [
1

𝑠
]  [𝐻𝑧]. 

Quantity 𝑓  
1

𝑇
 can be called ‘rotational frequency’ which gives the number of rotations per 

second. 
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 → 𝑒𝑖∙2𝜋∙2∙𝑡,    ∈ [0,1]  → 𝑒𝑖∙2𝜋∙3∙𝑡,    ∈ [0,1] 

  

Remark 

𝑓 in formula 

𝑒𝑖∙𝑓∙2𝜋∙𝑡     (𝑓 ∙ 2𝜋 ∙  )  𝑖 ∙    (𝑓 ∙ 2𝜋 ∙  ) 

can be called ’frequency’ (the frequency of the harmonic vibrations descripted by the 

trigonometric functions.). 
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Remark 

Using the well-known equality ω  2𝜋 ∙ 𝑓 we can write  

𝑒𝑖∙𝑓∙2𝜋∙𝑡  𝑒𝑖∙𝑓𝜔∙𝑡 

as well. 

Since         (  
𝜋

2
), it is generally enough to give the properties of the sin function, 

these are also valid for the cos function. 

 
In the Fourier theory the following three equivalent formulas are used to describe harmonic 
vibrations 
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𝐴 ∙    ( ∙    )  𝐴 ∙    (2𝜋𝑓 ∙    )  𝐴 ∙    (
2𝜋

𝑇
∙    ), 

where the physical quantities are 

−   is the angular frequency   [
𝑟𝑎𝑑

𝑠
] 

− 𝑓 is the frequency 𝑓  [
1

𝑠
]  [

𝑟𝑎𝑑

𝑠
]  [𝐻𝑧] 

− 𝑇 is the period 𝑇  [𝑠] 

−   is the phase   [𝑟𝑎𝑑]. 

If 

𝑢( )  𝐴𝑢 ∙    ( ∙    𝑢) 

is the input and 

𝑦( )  𝐴𝑦( ) ∙    ( ∙    𝑦( )) 

is the steady state output of a linear system, then the ratio 
𝐴𝑦(𝜔)

𝐴𝑢
 (gain) the difference 

 𝑦( ) −  𝑢 (phase shift) can characterize the system. 
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Giving a certain type of decompositions we will use that a linear combination of sin and cos 

functions of the same frequency can be written as a “shifted” sin function with the same 

frequency as follows 

𝐴 ∙      𝐵 ∙      √𝐴2  𝐵2 ∙    (   ), 

where 

  {
     

𝐵

𝐴
,    𝐴 ≥ 0

     
𝐵

𝐴
± 𝜋,    𝐴 < 0

 

Giving a decomposition of a function according to the trigonometric or exponential system 

we identify the ’frequencies’ and the related amplitudes (or energies) of components 

contained by the signal. 

In vibration diagnostics the most frequently used symptoms of some mechanical and 

electrical faults are special combinations of frequency values appearing in the frequency 

spectrum. 
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A trigonometric system contains sin and cos functions of frequencies 𝑓 , 2𝑓 , 3𝑓 , … where 

𝑓  is the basic frequency: 

 period frequency 

   (
2𝜋

𝑇
∙  )     (2𝜋𝑓 ∙  ) 𝑇  

1

𝑓 
 𝑓  

1

𝑇
 

   (
2𝜋

𝑇
∙  )     (2𝜋𝑓 ∙  ) 𝑇  

1

𝑓 
 𝑓  

1

𝑇
 

   (2 ∙
2𝜋

𝑇
∙  )     (2 ∙ 2𝜋𝑓 ∙  ) 𝑇/2 2𝑓  

   (2 ∙
2𝜋

𝑇
∙  )     (2 ∙ 2𝜋𝑓 ∙  ) 𝑇/2 2𝑓  

   (3 ∙
2𝜋

𝑇
∙  )     (3 ∙ 2𝜋𝑓 ∙  ) 𝑇/3 3𝑓  

   (3 ∙
2𝜋

𝑇
∙  )     (3 ∙ 2𝜋𝑓 ∙  ) 𝑇/3 3𝑓  

   (4 ∙
2𝜋

𝑇
∙  )     (4 ∙ 2𝜋𝑓 ∙  ) 𝑇/4 4𝑓  

   (4 ∙
2𝜋

𝑇
∙  )     (4 ∙ 2𝜋𝑓 ∙  ) 𝑇/4 4𝑓  
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 →    (
2𝜋

𝑇
∙  )     (2𝜋𝑓 ∙  ) 

 

 →    (
2𝜋

𝑇
∙  )     (2𝜋𝑓 ∙  ) 

 

 →    (2 ∙
2𝜋

𝑇
∙  )     (2 ∙ 2𝜋𝑓 ∙  ) 

 

 →    (2 ∙
2𝜋

𝑇
∙  ) 

 

 →    (3 ∙
2𝜋

𝑇
∙  )     (3 ∙ 2𝜋𝑓 ∙  ) 

 

 →    (3 ∙
2𝜋

𝑇
∙  )     (3 ∙ 2𝜋𝑓 ∙  ) 

 

𝑇 𝑇

𝑇 𝑇

𝑇 𝑇
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 →    (4 ∙
2𝜋

𝑇
∙  )     (4 ∙ 2𝜋𝑓 ∙  ) 

 

 →    (4 ∙
2𝜋

𝑇
∙  )     (4 ∙ 2𝜋𝑓 ∙  ) 

 

When a T-periodic function is analysed, then  𝑓  
1

𝑇
. 

The figure shows a periodic function (red thick line) and its six harmonic components. 

 
In practice, when processing a vibration signal, sampled signals are available. The ratio of 
sampling frequency and the maximum frequency of the signal components determines the 

𝑇 𝑇
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“quality” of signal processing, a too low value of the sampling frequency leads to the 
appearance of fake frequencies in the frequency spectrum (aliasing). 

Example 

Suppose that there are three rotating parts in a machine generating harmonic vibrations: 

 rotational 
speed (RPM) 

harmonics 
(order) 

amplitude 

[𝐴,
𝑚𝑚

𝑠
] 

phase 
[ , 𝑟𝑎𝑑] 

Part 1 416 1 4 −0.11 

Part 2 580 2 3 0.47 

Part 3 1050 4 2 1.86 

Then the vibration signal is the sum of three sin functions 

 ( )  4 ∙    (43.56 ∙  − 0.11)  3 ∙    (121.47 ∙   0.47)  2 ∙    (439.81 ∙   1.86) 
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Sample the vibration velocity for 𝑇  0.2 seconds with sampling frequencies 𝑓𝑠1  50[𝐻𝑧], 
𝑓𝑠2  100[𝐻𝑧], 𝑓𝑠3  200[𝐻𝑧], respectively. 

The following diagrams show the sampled signals obtained with the different sampling 
frequencies. 
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In the theory of Fourier series functions 

𝑎  ∑(𝑎𝑘 ∙    (𝑘 ∙
2𝜋

𝑇
∙  )  𝑏𝑘 ∙    (𝑘 ∙

2𝜋

𝑇
∙  ))

𝑛

𝑘=1

, 

the so-called trigonometric polynomials have important role. 

Dealing with linear combination of periodic functions it is a question whether a linear 
combination of them is also a periodic function, since it can be shown that sum of periodic 
functions is not necessarily periodic. 

Let 𝑥1, . . . , 𝑥𝑛 be periodic functions with period 𝑇1 > 0, . . . , 𝑇𝑛 > 0. Function 

𝑥1  ⋯ 𝑥𝑛 

is periodic if and only if there exists 𝑇 > 0 such that for some positive integers 𝑘1, . . . , 𝑘𝑛  

𝑇  𝑘1 ∙ 𝑇1  𝑘2 ∙ 𝑇2  . . .  𝑘𝑛 ∙ 𝑇𝑛 

holds, that is, 𝑇 is a common multiple of periods. The smallest positive 𝑇 satisfying the 
system of equations above is the period of 𝑥1  ⋯ 𝑥𝑛. 
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Equalities 𝑇  𝑘1 ∙ 𝑇1  . . .  𝑘𝑛 ∙ 𝑇𝑛 imply that ratios  

𝑇2
𝑇1

 
𝑘1
𝑘2

, . . . ,
𝑇𝑛
𝑇1

 
𝑘1
𝑘𝑛
, 

are rational numbers. 

For example, function         (𝜋 ∙  ) is non-periodic, since the ratio of the two periods is 
𝜋 which is not rational. 

Period of the sum can be obtained by multiplying period 𝑇1 with the least common multiple 

of denominators in the simplest forms of fractions 
𝑇2

𝑇1
, . . . ,

𝑇𝑛

𝑇1
. 

Remark 

The considerations about periodicity above are valid for linear combinations 

𝛼1 ∙ 𝑥1  ⋯ 𝛼𝑛 ∙ 𝑥𝑛,     𝛼𝑖 ≠ 0 

as well. 
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Example 

Determine the period of function 

10.2 ∙    (
2𝜋

40
∙  ) − 3.3 ∙    (

2𝜋

60
∙  )  0.8 ∙    (

2𝜋

30
∙  ) 

Periods of the three functions in the linear combination are 

𝑇1  
2𝜋

2𝜋
40

 40,   𝑇2  
2𝜋

2𝜋
60

 60,   𝑇3  
2𝜋

2𝜋
30

 30 

The ratios of periods in the simplest form 

𝑇1
𝑇2

 
2

𝟑
,     

𝑇1
𝑇3

 
4

𝟑
 

The least common multiple of denominators: 𝑚     {3,3}  3 

Thus, the period is 

𝑇  𝑇1 ∙ 𝑚  40 ∙ 3  120 
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A similar result can be obtained for frequency 𝑓  
1

𝑇
. 

Let 𝑥1, . . . , 𝑥𝑛 be periodic functions with frequency 𝑓1 > 0, . . . , 𝑓𝑛 > 0, respectively. 

Function 

𝑥1  ⋯ 𝑥𝑛 

is periodic if and only if there exists 𝑓 > 0 such that for some positive integers 𝑘1, . . . , 𝑘𝑛 

𝑓1  𝑘1 ∙ 𝑓, . . . , 𝑓𝑛  𝑘𝑛 ∙ 𝑓 

holds, that is, all frequencies are multiples of frequency 𝑓. 

The largest 𝑓 satisfying the system of equations above is the frequency of 𝑥1  ⋯ 𝑥𝑛. 

Equalities 𝑓1  𝑘1 ∙ 𝑓, 𝑓2  𝑘2 ∙ 𝑓, . . . , 𝑓𝑛  𝑘𝑛 ∙ 𝑓 imply that ratios frequencies are rational 
numbers. 
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Period of the elements of the trigonometric system 

{   (𝑘 ∙
2𝜋

𝑇
∙  ) ,    (𝑘 ∙

2𝜋

𝑇
∙  )}

k∈ℕ
 

are 

𝑇,
𝑇

2
,… ,

𝑇

𝑘
,… 

while the frequencies are 

𝑓, 2 ∙ 𝑓, … , 𝑘 ∙ 𝑓, … 

respectively. 

The period and frequency of linear combinations of elements of the system are 𝑇 and 𝑓, 

respectively, supposing that the coefficient of    (
2𝜋

𝑇
) or the coefficient of    (

2𝜋

𝑇
∙  ) is 

different from zero. 
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1st week – Questions 
 

Question 1 

Give the complex sin, cos, and exp functions as power series, and the Euler formula. 

Answer 

   𝑧  ∑(−1)𝑛 ∙
1

(2𝑘  1)!

∞

𝑘= 

∙ 𝑧2𝑘+1,   𝑧 ∈ ℂ 

   𝑧  ∑(−1)𝑛 ∙
1

(2𝑘)!

∞

𝑘= 

∙ 𝑧2𝑘 ,   𝑧 ∈ ℂ 

𝐸𝑋𝑃(𝑧)  𝑒𝑧  ∑
1

𝑘!
∙ 𝑧𝑘

∞

𝑘= 

,     𝑧 ∈ ℂ 

𝑒𝑖∙𝜑       𝑖 ∙     ,      ∈ ℝ 
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Question 2 

Give the formula of harmonic vibrations using the angular frequency, the frequency, and 
the period, respectively. 

Answer 

𝐴 ∙    ( ∙    ) 

𝐴 ∙    (2𝜋𝑓 ∙    ) 

𝐴 ∙    (
2𝜋

𝑇
∙    ) 
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Question 3 

Give a necessary and sufficient condition for the periodicity of the sum of periodic functions. 

Give the period of the sum. 

Answer 

If functions 𝑥1, . . . , 𝑥𝑛 are periodic with period 𝑇1 > 0, . . . , 𝑇𝑛 > 0, then function 

𝑥1  ⋯ 𝑥𝑛 

is periodic if and only if there exists 𝑇 > 0 such that for some positive integers 𝑘1, . . . , 𝑘𝑛  

𝑇  𝑘1 ∙ 𝑇1  𝑘2 ∙ 𝑇2  . . .  𝑘𝑛 ∙ 𝑇𝑛 

holds, that is, 𝑇 is a common multiple of periods. 

The period of 

𝑥1  ⋯ 𝑥𝑛 

is the smallest positive 𝑇 satisfying the system of equations 

𝑇  𝑘1 ∙ 𝑇1  𝑘2 ∙ 𝑇2  . . .  𝑘𝑛 ∙ 𝑇𝑛. 
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1st week – Exercises 
Calculating the discrete Fourier transform  

𝑒𝑖∙2𝜋∙𝑘∙
n
𝑁,     𝑘  0,1, … , 𝑁 − 1 

values of the complex exponential function are used 

Exercise 

Plot values 

𝑒𝑖∙2𝜋∙𝑘∙
𝑛
6 ,     𝑘  1,… ,3, 𝑛  0,… ,5 

on the complex plane. 
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Case 𝑘  1, 𝑛  0,… ,5 Case 𝑘  2, 𝑛  0,… ,5 
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Case 𝑘  3, 𝑛  0,… ,5 
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Exercise 

Show that 

∑𝑒𝑖∙2𝜋∙
𝑛
6

5

𝑛= 

 0 

 

∑𝑒𝑖∙2𝜋∙
𝑛
6

5

𝑛= 

 𝑒  𝑒𝑖∙
2𝜋
6  𝑒𝑖∙

4𝜋
6  𝑒𝑖∙

6𝜋
6  𝑒𝑖∙

8𝜋
6  𝑒𝑖∙

1 𝜋
6   

 𝑒  𝑒𝑖∙
𝜋
3  𝑒𝑖∙

2𝜋
3  𝑒𝑖∙𝜋  𝑒𝑖∙

4𝜋
3  𝑒𝑖∙

5𝜋
3   

 1  (   
𝜋

3
 𝑖 ∙    

𝜋

3
)  (   

2𝜋

3
 𝑖 ∙    

2𝜋

3
)   

 (   𝜋  𝑖 ∙    𝜋)  (   
4𝜋

3
 𝑖 ∙    

4𝜋

3
)  (   

5𝜋

3
 𝑖 ∙    

5𝜋

3
)   

 1  
1

2
 𝑖 ∙

√3

2
−
1

2
 𝑖 ∙

√3

2
− 1 −

1

2
− 𝑖 ∙

√3

2
 
1

2
− 𝑖 ∙

√3

2
 0 
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Remark 

It can be proven that 

∑𝑒𝑖∙2𝜋∙
𝑛
𝑁

𝑁−1

𝑛= 

 0 

holds for all positive integers 𝑁. 
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Exercise 

Plot the given functions and characterize them in term of properties given in the table 

amplitude  
maximum  
minimum  
period  
frequency  
smallest positive zero place  

 

 →     ,      →    (2 ∙  ) ,      →    (3 ∙  ) ,      ∈ [−2𝜋, 2𝜋] 

 →    (
𝜋

2
∙  ) ,     𝑥 →    (𝜋 ∙  ) ,      →    (2𝜋 ∙  ) ,      ∈ [−2𝜋, 2𝜋] 

 →     ,      →    (2 ∙  ) ,      →    (3 ∙  ) ,      ∈ [−2𝜋, 2𝜋] 

 →    (
𝜋

2
∙  ) ,     𝑥 →    (𝜋 ∙  ) ,      →    (2𝜋 ∙  ) ,      ∈ [−2𝜋, 2𝜋] 

 →     ,      →
1

3
∙     ,      → 3 ∙     ,      ∈ [−2𝜋, 2𝜋] 

 →     ,      →
1

3
∙     ,      → 3 ∙     ,      ∈ [−2𝜋, 2𝜋] 
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 →     ,      →     − 1,      →      2,      ∈ [−2𝜋, 2𝜋] 

 

 →     ,      →     − 2,      →      1,      ∈ [−2𝜋, 2𝜋] 

 →     ,      →    ( −
𝜋

2
) ,      →    (  

𝜋

2
) ,      ∈ [−2𝜋, 2𝜋] 

 →     ,      →    ( −
𝜋

2
) ,      →    (  

𝜋

2
) ,      ∈ [−2𝜋, 2𝜋] 
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 𝒕 → 𝐬𝐢𝐧 𝒕 𝒕 → 𝐬𝐢𝐧𝟐𝒕 𝒕 → 𝐬𝐢𝐧 𝟑𝒕 
amplitude 1 1 1 
maximum 1 1 1 
minimum −1 −1 −1 
period 2𝜋 𝜋 2𝜋/3 
frequency 1/2𝜋 1/𝜋 3/2𝜋 

smallest positive zero place 𝜋 
𝜋

2
 

𝜋

3
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 𝒕 → 𝐬𝐢𝐧
𝝅

𝟐
𝒕 𝒕 → 𝐬𝐢𝐧𝝅𝒕 𝒕 → 𝐬𝐢𝐧 𝟐𝝅𝒕 

amplitude 1 1 1 
maximum 1 1 1 
minimum −1 −1 −1 
period 4 2 1 
frequency 1/4 1/2 1 
smallest positive zero place 2 1 1/2 
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 𝒕 → 𝐜𝐨𝐬 𝒕 𝒕 → 𝐜𝐨𝐬𝟐𝒕 𝒕 → 𝐜𝐨𝐬𝟑𝒕 
amplitude 1 1 1 
maximum 1 1 1 
minimum −1 −1 −1 
period 2𝜋 𝜋 2𝜋/3 
frequency 1/2𝜋 1/𝜋 3/2𝜋 
smallest positive zero place 𝜋/2 𝜋/4 𝜋/6 
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 𝒕 → 𝐜𝐨𝐬
𝝅

𝟐
𝒕 𝒙 → 𝐜𝐨𝐬𝝅𝒕 𝒕 → 𝐜𝐨𝐬 𝟐𝝅𝒕 

amplitude 1 1 1 
maximum 1 1 1 
minimum −1 −1 −1 
period 4 2 1 
frequency 1/4 1/2 1 
smallest positive zero place 1 1/2 1/4 
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 𝒕 → 𝐬𝐢𝐧 𝒕 𝒕 →
𝟏

𝟑
𝐬𝐢𝐧 𝒕 𝒕 → 𝟑 𝐬𝐢𝐧 𝒕 

amplitude 1 1/3 3 
maximum 1 1/3 3 
minimum −1 −1/3 −3 
period 2𝜋 2𝜋 2𝜋 
frequency 1/2𝜋 1/2𝜋 1/2𝜋 
smallest positive zero place 𝜋 𝜋 𝜋 
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 𝒕 → 𝐜𝐨𝐬 𝒕 𝒕 →
𝟏

𝟑
𝐜𝐨𝐬 𝒕 𝒕 → 𝟑 𝐜𝐨𝐬 𝒕 

amplitude 1 1/3 3 
maximum 1 1/3 3 
minimum −1 −1/3 −3 
period 2𝜋 2𝜋 2𝜋 
frequency 1/2𝜋 1/2𝜋 1/2𝜋 
smallest positive zero place 𝜋/2 𝜋/2 𝜋/2 
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 𝒕 → 𝐬𝐢𝐧 𝒕 𝒕 → 𝐬𝐢𝐧 𝒕 − 𝟏 𝒕 → 𝐬𝐢𝐧 𝒕  𝟐 
amplitude 1 1 1 
maximum 1 0 3 
minimum −1 −2 1 
period 2𝜋 2𝜋 2𝜋 
frequency 1/2𝜋 1/2𝜋 1/2𝜋 
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 𝒕 → 𝐜𝐨𝐬 𝒕 𝒕 → 𝐜𝐨𝐬 𝒕 − 𝟐 𝒕 → 𝐜𝐨𝐬 𝒕  𝟏 
amplitude 1 1 1 
maximum 1 −1 2 
minimum −1 −3 0 
period 2𝜋 2𝜋 2𝜋 
frequency 1/2𝜋 1/2𝜋 1/2𝜋 
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 𝒕 → 𝐬𝐢𝐧 𝒕 𝒕 → 𝐬𝐢𝐧 (𝒕 −
𝝅

𝟐
) 𝒕 → 𝐬𝐢𝐧 (𝒕  

𝝅

𝟐
) 

amplitude 1 1 1 
maximum 1 1 1 
minimum −1 −1 −1 
period 2𝜋 2𝜋 2𝜋 
frequency 1/2𝜋 1/2𝜋 1/2𝜋 
smallest positive zero place 𝜋 𝜋/2 𝜋/2 
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 𝒕 → 𝐜𝐨𝐬 𝒕 𝒕 → 𝐜𝐨𝐬 (𝒕 −
𝝅

𝟐
) 𝒕 → 𝐜𝐨𝐬 (𝒕  

𝝅

𝟐
) 

amplitude 1 1 1 
maximum 1 1 1 
minimum −1 −1 −1 
period 2𝜋 2𝜋 2𝜋 
frequency 1/2𝜋 1/2𝜋 1/2𝜋 
smallest positive zero place 𝜋 𝜋/2 𝜋/2 
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Exercise 

Plot function 

𝑥( )  12.5 ∙    (25 − 0,8)  44.9 

on interval [0,3𝑇] and characterize it. 

 

 

amplitude 12.5 
maximum 57.4 
minimum 32.4 

period 
2𝜋

25
≈ 0.251 

frequency 
25

2𝜋
≈ 3.979 

angular frequency 25 

phase −0.8 
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Exercise 

Plot function 

𝑥( )  0.078 ∙    (1250 − 0.05)  2.442 

on interval [0,3𝑇] and characterize it. 

 

 

amplitude 0.078 
maximum 2.520 
minimum 2.364 

period 
2𝜋

1250
≈ 0.005 

frequency 
1250

2𝜋
≈ 200 

angular frequency 1250 

phase −0.05 
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Exercise: Determine the period of function 

10.2 ∙    (0.12 ∙ 𝑥) − 3.3 ∙    (5.5 ∙ 𝑥)  0.8 ∙    (1.28 ∙ 𝑥) 

Periods of the three functions in the linear combination are 

𝑇1  
2𝜋

0.12
,   𝑇2  

2𝜋

5.5
,   𝑇3  

2𝜋

1.28
 

The ratios of periods in the simplest form 

𝑇1
𝑇2

 
5.5

0.12
 
𝟐𝟕𝟓

𝟔
,     

𝑇1
𝑇3

 
1.28

0.12
 
𝟑𝟐

𝟑
 

The least common multiple of denominators: 𝑚  𝑙𝑘𝑘 {6,3}  6 

Thus, the period is 

𝑇  𝑇1 ∙ 𝑚  
2𝜋

0.12
∙ 6  100𝜋 
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2nd week 
 

2 Statistical Analysis of Vibration Signals 
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Certain types of mechanical damage of rotating parts imply the change of some statistical 
parameters in time, such as mean, standard deviation, RMS, peak value, skewness and 
kurtosis of the vibration velocity or acceleration data in the sampled signal. 

The changed shape of the probability density function of the vibration velocity or 
acceleration data can be an indicator of failures. The level of shock pulses generated by a 
healthy ball bearing follows normal distribution, the appearance of damage in the bearing 
results in the change of probability density function.  

Some of the abovementioned parameters are related to the statistical moments of the 
probability density function. 

The 𝑛-th raw moment (i.e., moment about zero) of a distribution is defined by 

𝑀𝑛  ∫ 𝑥𝑛 ∙ 𝑓(𝑥)

∞

−∞

𝑑𝑥,     𝑛  1,2, …, 

while the 𝑛-th moment about 𝑐 is 

𝑀𝑛,𝑐  ∫(𝑥 − 𝑐)𝑛 ∙ 𝑓(𝑥)

∞

−∞

𝑑𝑥,     𝑛  0,1,2, …, 

where 𝑓 is the probability density function. 

If 𝑐 is the expected value, then 𝑀𝑛,𝑐 is called the 𝑛-th central moment. 
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The normalised 𝑛-th central moment (or standardised moment) is the 𝑛-th central moment 
divided by the 𝑛-th power of the standard deviation: 

∫ (𝑥 − 𝐸(𝑋))
𝑛
∙ 𝑓(𝑥)

∞

−∞
𝑑𝑥

(√∫ (𝑥 − 𝐸(𝑋))
2
∙ 𝑓(𝑥)

∞

−∞
𝑑𝑥)

𝑛  
𝐸((𝑋 − 𝜇)𝑛)

𝜎𝑛
, 

where 

𝜇  𝐸(𝑋)  ∫ 𝑥 ∙ 𝑓(𝑥)

∞

−∞

𝑑𝑥 

is the mean and 

𝜎  √𝑉𝑎𝑟(𝑋)  √ ∫(𝑥 − 𝐸(𝑋))
2
∙ 𝑓(𝑥)

∞

−∞

𝑑𝑥 

is the standard deviation. 
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moment 
ordinal 

raw 
moment 

central 
moment 

standardised 
moment 

1 mean   

2  variance  

3   skewness 

4   kurtosis 
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Mean values 

Mean values of the vibration velocity signal inform us about the severity of the vibration. In 
vibration standards there are limits for the RMS of the vibration velocity belonging to the 
different classes of machines (classified according to size, power and function). 
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The Root Mean Square (𝑹𝑴𝑺 or effective value) of quantity 𝑋 and its estimation from a 
sample are 

definition estimation 

𝑋RMS  𝑋eff  √
1

𝑇
∙ ∫ 𝑥2( ) 𝑑 

𝑇

 

 

where 𝑇 is the period of 𝑥( ). 

√
1

𝑛
∙∑𝑥𝑖

2

𝑛

𝑖=1

 

Remark: 

Simple measuring equipment generally 
provide the RMS of the vibration velocity 
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RMS does not increase (significantly) with the isolated peaks in the signal – while a periodic 
series of high energy events will increase the overall level of vibration (value of RMS). Thus, 
RMS is not sensitive to incipient failures and starts indicating a fault only after the damage 
crossed a certain level of severity. The main usage of this parameter is to monitor the 
overall vibration level and is used in conjunction with other parameters. 

The mean of the absolute value of quantity 𝑋 and its estimation from a sample are 

definition estimation 

𝑋𝑎𝑣𝑔  
1

𝑇
∙ ∫|𝑥( )| 𝑑 

𝑇

 

 

where 𝑇 is the period of 𝑥( ). 

1

𝑛
∙∑|𝑥𝑖|

𝑛

𝑖=1
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Peak values 

 

Peak to Peak value of quantity 𝑋 and its estimation 

definition estimation 

𝑋PTP  𝑥max − 𝑥min 𝑋PTP  𝑥max − 𝑥min 

 

Peak value of quantity 𝑋 and its estimation 

definition estimation 

𝑋peak  𝑚𝑎𝑥{|𝑥max|, |𝑥min|} 𝑋peak  𝑚𝑎𝑥{|𝑥max|, |𝑥min|} 
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Moments 

Skewness 

Skewness characterises the symmetry of the distribution around its mean. The skewness 
for symmetric distributions is zero. Its negative / positive value means that the tail of the 
probability density function in the left/right side is longer than that in the opposite side.  

The mean of positively / negatively skewed data will be greater / less than the median. 

definition estimation 

𝐸((𝑋 − 𝜇)3)

𝜎3
 

a biased estimation 

1
𝑛
∙ ∑ (𝑥𝑖 − 𝑥)3𝑛

𝑖=1

(√
1
𝑛
∙ ∑ (𝑥𝑖 − 𝑥)2𝑛

𝑖=1 )

3 

an unbiased estimation 

𝑛

(𝑛 − 1) ∙ (𝑛 − 2)
∙
∑ (𝑥𝑖 − 𝑥)3𝑛
𝑖=1

𝑠3
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Kurtosis 

Kurtosis describes the shape of the distribution. In signal processing, kurtosis can reveal 
the flatness or the spikiness of the signal. Its value is low for good bearing and high for 
bearings due to spiky nature of the signal. 

The kurtosis for a signal of Gaussian distribution is around 3. As faults appear on the ball 
bearing and the signal becomes noisy kurtosis will higher than 3. 

definition estimation 

𝐸((𝑋 − 𝜇)4)

𝜎4
− 3 

a biased estimation 

1
𝑛
∙ ∑ (𝑥𝑖 − 𝑥)4𝑛

𝑖=1

(√
1
𝑛
∙ ∑ (𝑥𝑖 − 𝑥)2𝑛

𝑖=1 )

4 − 3 

an unbiased estimation 

𝑛 ∙ (𝑛 − 1)

(𝑛 − 1) ∙ (𝑛 − 2) ∙ (𝑛 − 3)
∙
∑ (𝑥𝑖 − 𝑥)4𝑛
𝑖=1

𝑠4
− 3 ∙

(𝑛 − 1)2

(𝑛 − 2) ∙ (𝑛 − 3)
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Kurtosis is a parameter defined as the fourth centralized moment of the signal normalized 
by square of the variance of the signal.  

If a vibration signal contains events which are impulsive in nature, then its overall 
amplitude distribution function is sharper, leading to higher kurtosis values. However, as 
the gear fault develops from being localised to more widely distributed, the generated 
vibration acceleration signal becomes less impulsive and transforms into more complex 
signal containing high energy, more widely distributed components, which reduces the 
peakedness of the amplitude distribution and causes the kurtosis to drop. [4] 

Signals that have a higher kurtosis value have more peaks that are greater than three-sigma. 
In the real world many kinds of vibration environments are characterized by signals that 
have high kurtosis value, the fatigue and damage potential for these vibrations are higher.  
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Comparison of the control signals for a Gaussian signal (kurtosis=3) and a non-Gaussian 
signal with kurtosis=4. 
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Crest factor 

Crest factor was designed to detect early impulses appearing in the signal that are 
characteristic for an incipient gear fault: 

𝑋𝑝𝑒𝑎𝑘

𝑋𝑅𝑀𝑆
 

For example in gear monitoring, as the gear tooth condition deteriorates the impulsive 
content within the signal (𝑋𝑝𝑒𝑎𝑘) increases, while the energy within the impulses is not big 

enough to cause noticeable changes in 𝑋𝑅𝑀𝑆. This results in increase of the crest factor. 
However, as the damage progress the RMS values start to increase quicker than the 
maximal absolute amplitude which causes the overall crest factor value to decrease. Thus 
crest factor can be useful in indicating the early stages of gear fault development. 
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Reliability 

Reliability is a characteristic of the item / system, expressed by the probability that 

− it will perform its required function 

− under given conditions 

− for a stated time interval. 

For a given mission time 𝑇 

𝑅  𝑃(𝜏 > 𝑇) 

is a simple number (𝜏 is the time to failure or the failure-free time). 

𝑅 is the probability that no failure will occur in the interval [0, 𝑇]. 

If 𝑛 statistically identical and independent items are put into operation at time 

  0 to perform a given mission and �̅� of them accomplish it successfully, then the ratio 

�̅�

𝑛
 

is a random variable which converges for increasing 𝑛 to the true value of the reliability.  
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Reliability function 

𝑅( )  𝑃(𝜏 >  ),      > 0 

 

If 𝐹 is the cumulative distribution function of the failure-free time, then 

𝑅( )  𝑃(𝜏 >  )  1 − 𝐹( ),      > 0 

The figure shows the cumulative distribution 

function and the reliability function of exponentially 

distributed time to failure. 

 

 

  

𝐹

𝑅
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Failure Rate, Mean Time to Failure, Mean Time Between Failures 

 

Let us assume that 𝑛 statistically 

identical, new, and independent items 

are put into operation at time   0, 

under the same conditions. 

�̅�( ) 

is the number of items that have not 

yet failed at the time  . 

 1, …  𝑛 

are the observed failure-free times 

(operating times to failure). 
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Empirical reliability function 

�̂�( )  
�̅�( )

𝑛
 

Remark 

�̂�( ) converges to 𝑅( ) for 𝑛 → ∞. 

Empirical failure rate for an interval [ ,   𝛿 ] 

�̂�( )  
�̅�( ) − �̅�(  𝛿 )

�̅�( )
∙
1

𝛿 
 
�̂�( ) − �̂�(  𝛿 )

�̂�( )
∙
1

𝛿 
 

Remark 

�̂�( ) ∙ 𝛿  is the ratio of the items failed in the interval [ ,   𝛿 ] to the number of items still 

operating (or surviving) at time  . 

If 𝑅( ) is derivable 

𝜆( )  −
1

𝑅( )
∙
𝑑𝑅( )

𝑑 
 

Considering 𝑅(0)  1 we have 

𝑅( )  𝑒−∫ 𝜆(𝑥)
𝑡
0 𝑑𝑥 
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In many practical applications, 𝜆( )  𝜆 can be assumed. Then 

• 𝑅( )  𝑒−𝜆𝑡 

• the failure-free time 𝜏 is exponentially distributed (𝐹( )  1 − 𝑒−𝜆𝑡,  > 0). 

• �̂�  
𝑘

𝑇
 (𝑘 is the number of failures during 𝑇) 

Mean time to failure 

𝑀𝑇𝑇𝐹  𝐸[𝜏]  ∫  ∙ 𝑓( )

∞

 

𝑑  

Remark 

If    
𝑡→∞

 ∙ 𝑅( )  0, then 

𝑀𝑇𝐵𝐹  𝐸(𝑇)  ∫  ∙ 𝑓( )

∞

 

𝑑  ∫ 𝑅( )

∞

 

𝑑  

For 𝜆( )  𝜆 it follows 𝐸[𝜏]  
1

𝜆
. 
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Example 

1,500 pieces of an electronic component are installed. The table shows the failure rate 

values for this type of components. Let’s calculate the number of operating (surviving) 

components month-by-month using the given failure rates. 

month failure rate (1/month) number of operating parts 
  1500 

1 0.05  
2 0.015  
3 0.008  
4 0.005  
5 0.005  

Solution: 

month failure rate (1/month) number of operating parts 
  1500 

1 0.05 1425 
2 0.015 1404 
3 0.008 1392 
4 0.005 1385 
5 0.005 1379 
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WEIBULL DISTRIBUTION 

Probability density function of the Weibull distribution is 

𝑓( )  
𝛼

𝛽
∙ (
 

𝛽
)
𝛼−1

∙ 𝑒
−(

𝑡
𝛽
)
𝛼

,    > 0  

𝛽 > 0 is the scale parameter 

𝛼 > 0 is the shape parameter. 

When 𝛽  1, the Weibull distribution is identical to the exponential distribution. 

Cumulative distribution function of the Weibull distribution is 

𝐹( )  1 − 𝑒
−(

𝑡
𝛽
)
𝛼
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Linearization of the Weibull model 

𝐹  1 − 𝑒
−(

𝑥
𝜷
)
𝜶

 

 

  (  
1

1 − 𝐹
)  𝜶 ∙   𝑥 − 𝛼 ∙   𝛽 

𝛼: slope  𝜶 

−𝛼 ∙   𝛽: intercept  𝜷 
 

𝐹  1 − 𝑒
−(

𝑥
𝛽
)
𝛼

 

1 − 𝐹  𝑒
−(

𝑥
𝛽
)
𝛼

 

  (1 − 𝐹)  −(
𝑥

𝛽
)
𝛼

 

  
1

1 − 𝐹
 (

𝑥

𝛽
)
𝛼

 

  (  
1

1 − 𝐹
)  𝛼 ∙   

𝑥

𝛽
 

  (  
1

1 − 𝐹
)  𝛼 ∙   𝑥 − 𝛼 ∙   𝛽 
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Weibull model fitting with linearization 

 

𝑛 𝑥 

(ordered sample) 

𝑙𝑛 𝑥 
𝐹  

𝑛 − 0.5

𝑁
 

(cumulative probability) 

𝑙𝑛 (𝑙𝑛
1

1 − 𝐹
) 

1 𝑥1 𝑙𝑛 𝑥1 0.5/𝑁  

2 𝑥2 𝑙𝑛 𝑥2 1.5/𝑁  

⋮ ⋮ ⋮ ⋮  

𝑁 𝑥𝑁 𝑙𝑛 𝑥𝑁 (𝑁 − 0.5)/𝑁  
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Weibull model fitting with 
Excel Solver 
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2nd week – Questions 
 

Question 1 

Give the definition of RMS 

Answer 

𝑋RMS  𝑋eff  √
1

𝑇
∙ ∫ 𝑥2( ) 𝑑 

𝑇
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Question 2 

Give the definition of skewness and kurtosis 

Answer 

𝐸((𝑋 − 𝜇)3)

𝜎3
 

𝐸((𝑋 − 𝜇)4)

𝜎4
− 3 
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Question 3 

Give the Cumulative distribution function of the Weibull distribution and its linearization. 

Answer 

𝐹( )  1 − 𝑒
−(

𝑡
𝛽
)
𝛼

 

  (  
1

1 − 𝐹
)  𝛼 ∙   𝑥 − 𝛼 ∙   𝛽 
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2nd week – Exercises 
Exercise 

In cell A1:A1000 of an Excel worksheet a 1000-element sample is available. 

Calculate the following values 

𝑋𝑅𝑀𝑆, kurtosis 

𝑋𝑃𝑇𝑃, skewness 

𝑋𝑝𝑒𝑎𝑘 , crest factor 

 
𝑋𝑅𝑀𝑆 SQRT(SUMSQ(A1:A1000)/1000) 

𝑋𝑃𝑇𝑃  MAX(A1:A1000)-MIN(A1:A1000) 

𝑋𝑝𝑒𝑎𝑘  MAX(ABS(MAX(A1:A1000));ABS(MIN(A1:A1000))) 

kurtosis KURT(A1:A100) 

skewness SKEW(A1:A100) 

crest factor  𝑋𝑝𝑒𝑎𝑘/𝑋𝑅𝑀𝑆 
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Exercise 

1500 electronic parts have been built into devices. The table below contains the observed failure rate 
values for every month in two years. 

Calculate the number of operating components at the end of the months supposing that real number 
of failures per month is equal that follows from the failure rate.  

month 
failure rate 
(1/month) 

number of 
operating parts 

 
month 

failure rate 
(1/month) 

number of 
operating parts 

1 0.05   13 0.005  

2 0.015   14 0.005  

3 0.008   15 0.005  

4 0.005   16 0.005  

5 0.005   17 0.005  

6 0.005   18 0.005  

7 0.005   19 0.005  

8 0.005   20 0.01  

9 0.005   21 0.03  

10 0.005   22 0.05  

11 0.005   23 0.22  

12 0.005   24   
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month 
failure rate 
(1/month) 

number of 
operating parts 

 
month 

failure rate 
(1/month) 

number of 
operating parts 

  1500     

1 0.05 1425  13 0.005 1324 

2 0.015 1404  14 0.005 1318 

3 0.008 1392  15 0.005 1311 

4 0.005 1385  16 0.005 1305 

5 0.005 1379  17 0.005 1298 

6 0.005 1372  18 0.005 1292 

7 0.005 1365  19 0.005 1285 

8 0.005 1358  20 0.01 1272 

9 0.005 1351  21 0.03 1234 

10 0.005 1344  22 0.05 1172 

11 0.005 1338  23 0.22 914 

12 0.005 1331  24  804 
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failure rate number of operating parts 
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3rd week 
 

3 Hilbert Spaces, Orthogonality, Similarity of Functions 
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The Concept of Hilbert Spaces 

Let 𝑋 be a real or complex linear space. A function 〈 〉: 𝑋 × 𝑋 → ℂ is called inner product 
(or scalar product) if 

ℝ ∋ 〈𝑥, 𝑥〉 ≥ 0,     〈𝑥, 𝑥〉  0   ⟺    𝑥  0 

〈𝑥, 𝑦〉  〈𝑦, 𝑥〉∗ 

〈𝜆 ∙ 𝑥, 𝑦〉  𝜆 ∙ 〈𝑥, 𝑦〉 

〈𝑥  𝑦, 𝑧〉  〈𝑥, 𝑧〉  〈𝑦, 𝑧〉 

hold for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝜆 ∈ ℂ. 

𝑥∗ denotes the complex conjugate of 𝑥 ∈ ℂ. 

Remark 

〈𝑥, 𝜆 ∙ 𝑦〉  〈𝜆 ∙ 𝑦, 𝑥〉∗  (𝜆 ∙ 〈𝑦, 𝑥〉)∗  𝜆∗ ∙ 〈𝑦, 𝑥〉∗  𝜆∗ ∙ 〈𝑥, 𝑦〉 

Remark 

〈𝑥, 𝑦  𝑧〉  〈𝑦  𝑧, 𝑥〉∗  〈𝑦, 𝑥〉∗  〈𝑧, 𝑥〉∗  〈𝑥, 𝑦〉  〈𝑥, 𝑧〉 

Remark 

In the special case when the inner product is a real-valued function 〈 〉: 𝑋 × 𝑋 → ℝ the 
second property can be simply written as 〈𝑥, 𝑦〉  〈𝑦, 𝑥〉. 

The pair (𝑋, 〈 〉) is called inner product space. 
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An inner product space (𝑋, 〈 〉) is called Hilbert space if 𝑋 is a Banach space with the norm 

function ‖ ‖: 𝑋 → ℝ defined as ‖𝑥‖  √〈𝑥, 𝑥〉. 

Remark 

Each Hilbert space (𝑋, 〈 〉) is a normed space with the norm 

‖𝑥‖  √〈𝑥, 𝑥〉,   𝑥 ∈ 𝑋. 

The value of inner product characterizes the ‘similarity’ of elements in a Hilbert space. The 
higher the value of the inner product is, the more ‘similar’ the two elements are. 

Remark 

In the space of spatial vectors the inner product of two vectors of given length is zero if they 
are orthogonal (‘not similar’), and it reaches its maximum if they are parallel (‘similar’). 
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Finite Dimensional Hilbert spaces 

A Hilbert space (𝑋, 〈 〉) is finite dimensional if 𝑋 is a finite dimensional linear space. 

Let 𝑛 be a positive integer and suppose that 𝑋 is an 𝑛-dimensional Hilbert space. 

A system of vectors {𝑏1, … , 𝑏𝑘} ⊂ 𝑋, 𝑘 ∈ ℕ is orthogonal if its elements are pairwise 
orthogonal. 

Remark 

It is easy to see that each orthogonal system of non-zero vectors is linearly independent. 

The system is orthonormal if orthogonal and normed, that is, the elements are unit vectors 
(the norm of each vector in the system is equal to 1). 

If an orthogonal (orthonormal) system {𝑏1, … , 𝑏𝑛} ⊂ 𝑋 is a basis of 𝑋, it is called orthogonal 
(orthonormal) basis of 𝑋. 

If {𝑏1, … , 𝑏𝑛} ⊂ 𝑋 is an orthonormal basis of 𝑋 and 𝑥 ∈ 𝑋 then 

𝑥  ∑〈𝑥, 𝑏𝑖〉 ∙ 𝑏𝑖

𝑛

𝑖=1

. 

This sum is also called the decomposition 𝑥 ∈ 𝑋 with respect to the orthonormal basis 
{𝑏1, … , 𝑏𝑛}. The coefficients 

〈𝑥, 𝑏𝑖〉,     𝑖  1, . . , 𝑛 

are the coordinates of 𝑥 ∈ 𝑋 with respect to the orthonormal basis {𝑏1, … , 𝑏𝑛}. 
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Remark 

Coordinates of a vector 𝑥 ∈ 𝑋 with respect to an orthonormal basis {𝑏1, … , 𝑏𝑛} can be 
calculated as the inner product of 𝑥 and the basis vectors 𝑏𝑖 . We will use the generalization 
of this statement in function spaces when we are talking about the decomposition of 
functions with respect to an orthonormal system of functions. 
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The space of spatial (planar) vectors 

The space of spatial (planar) vectors is a 3-dimensional (2-dimensional) Hilbert space with 
the inner product 

〈�̅�,  ̅〉  ‖�̅�‖ ∙ ‖ ̅‖ ∙    ∢(�̅�,  ̅) 

Remark 

The inner product of spatial (planar) vectors is generally called scalar product and 
denoted simply by �̅� ∙  ̅ or �̅� ̅. 

Remark 

Using the definition we have 

∢(�̅�,  ̅)        
〈�̅�,  ̅〉

‖�̅�‖ ∙ ‖ ̅‖
 , 

that is, the angle of spatial (planar) vectors can be calculated from the scalar product and 
the magnitude (norm) of the vectors. 

                    
Spatial (planar) vectors �̅� and  ̅ are perpendicular in geometry iff �̅� ∙  ̅  0. 

∢(�̅�,  ̅)
�̅�

 ̅

  ̅
  ̅

�̅�
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Perpendicular vectors are also called orthogonal. 

In applications (for instance in mechanics) the orthonormal basis is generally denoted by  

{  ,̅   ,̅ �̅�}. Coordinates of a spatial vector  ̅ with respect to the orthonormal basis {  ,̅   ,̅ �̅�} are 

 𝑥  〈 ̅,    ̅〉,    𝑦  〈 ̅,    ̅〉,    𝑧  〈 ̅, �̅� 〉 

and the decomposition  ̅ with respect to the orthonormal basis {  ,̅   ,̅ �̅�} is 

 ̅   𝑥 ∙   ̅   𝑦 ∙   ̅   𝑧 ∙ �̅�  〈 ̅,    ̅〉 ∙   ̅  〈 ̅,    ̅〉 ∙   ̅  〈 ̅, �̅� 〉 ∙ �̅� 
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The space of real n-tuples 

ℝ𝑛 is a 𝑛-dimensional Hilbert space with the inner product 

〈𝑥, 𝑦〉  ∑𝑥𝑖 ∙ 𝑦𝑖

𝑛

𝑖=1

,   𝑥  (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛, 𝑦  (𝑦1, … , 𝑦𝑛) ∈ ℝ𝑛 . 

𝑥  (𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 and  𝑦  (𝑦1, … , 𝑦𝑛) ∈ ℝ𝑛 are called orthogonal if 

〈𝑥, 𝑦〉  ∑𝑥𝑖 ∙ 𝑦𝑖

𝑛

𝑖=1

 0. 

The ‘natural’ orthonormal basis is in ℝ𝑛 is {(

1
0
⋮
0

) ,(

0
1
⋮
0

) , . . . , (

0
0
⋮
1

)} which is 

{(
1
0
0
) , (

0
1
0
) , (

0
0
1
)} in ℝ3 and {(

1
0
) , (

0
1
)} in ℝ2. 
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The space of complex n-tuples 

ℂ𝑛 (which is an 𝑛-dimensional linear space over ℂ) is a Hilbert space with the inner product 

〈𝑥, 𝑦〉  ∑𝑥𝑖 ∙ 𝑦𝑖
∗

𝑛

𝑖=1

,   𝑥  (𝑥1, … , 𝑥𝑛) ∈ ℂ𝑛, 𝑦  (𝑦1, … , 𝑦𝑛) ∈ ℂ𝑛 . 

𝑥  (𝑥1, … , 𝑥𝑛) ∈ ℂ𝑛 and  𝑦  (𝑦1, … , 𝑦𝑛) ∈ ℝ𝑛 are called orthogonal if 

〈𝑥, 𝑦〉  ∑𝑥𝑖 ∙ 𝑦𝑖
∗

𝑛

𝑖=1

 0. 
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Orthogonality and Similarity of Functions 

Let 𝐼 be an interval. A function 𝑥: 𝐼 → ℂ is square integrable if 

∫|𝑥( )|2

𝐼

< ∞. 

| | denotes the magnitude (norm) of a complex number. The space of the square integrable 
functions defined on 𝐼 is denoted by 𝐿2(𝐼). 

Remark 

A real valued function 𝑥: 𝐼 → ℝ is square integrable if ∫ 𝑥2
𝐼

< ∞. 

Remark 

Square integrable functions are mathematical representations of finite energy signals. 

The inner product of functions 𝑥 ∈ 𝐿2(𝐼) and 𝜓 ∈ 𝐿2(𝐼) is 

〈𝑥, 𝜓〉  ∫(𝑥 ∙ 𝜓∗)

𝐼

 ∫ 𝑥( ) ∙ 𝜓∗( )

𝐼

𝑑 . 

Remark 

If 𝑥 ∈ 𝐿2(𝐼) and 𝜓 ∈ 𝐿2(𝐼) are real-valued functions then 𝜓∗  𝜓, and we can write 
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〈𝑥, 𝜓〉  ∫(𝑥 ∙ 𝜓)

𝑋

 ∫ 𝑥( ) ∙ 𝜓( )

𝑋

𝑑 . 

Remark 

In the definition of the inner product in 𝐿2(𝐼) the so-called Lebesgue integral is used, which 
is more general than the Riemann integral and more suitable for the general Fourier theory. 
If a function is Riemann integrable then it is also Lebesgue integrable, and the two integrals 
are equal. In engineering models, principally, the so-called piecewise continuous functions 
appear which are Riemann integrable. In our examples we have piecewise continuous 
functions, thus we have to calculate Riemann integrals. 

Remark 

In the definition the inner product the Lebesgue integrability of functions is supposed. If we 

want to introduce the concept of inner product 〈𝑥, 𝜓〉  ∫ (𝑥 ∙ 𝜓∗)
𝐼

 in the class of Riemann 

integrable functions we also have to suppose the Riemann integrability of 𝑥 ∙ 𝜓∗. 

The norm of function 𝑥 ∈ 𝐿2(𝐼) is 

‖𝑥‖  √〈𝑥, 𝑥〉  √∫ |𝑥|2
𝐼

. 

Remark 



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 96 

If 𝑥 ∈ 𝐿2(𝐼) is a real-valued function we can write ‖𝑥‖  √∫ 𝑥2
𝐼

. 

Remark 

In engineering textbooks ∫ |𝑥|2
𝐼

 is frequently referred as the “energy content” of signal 

𝑥 ∈ 𝐿2(𝐼). 

Functions 𝑥 ∈ 𝐿2(𝐼) and 𝜓 ∈ 𝐿2(𝐼)  are orthogonal if 

〈𝑥, 𝜓〉  ∫(𝑥 ∙ 𝜓∗)

𝐼

 0. 

Remark 

The real-valued functions 𝑥 ∈ 𝐿2(𝐼) and 𝜓 ∈ 𝐿2(𝐼) are orthogonal if 

〈𝑥, 𝜓〉  ∫(𝑥 ∙ 𝜓)

𝐼

 0. 

Remark 

The value of the inner product characterizes the “similarity” of the functions. 
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Example 

Consider the following functions in 𝐿2([0,2𝜋]): 

𝑥1( )      , 𝑥2( )      ,  

𝑥3( )     2 , 𝑥4( )     2 ,  ∈ [0,2𝜋] 

〈𝑥𝑖 , 𝑥𝑗〉  0 if 𝑖 ≠ 𝑗, that is, functions 𝑥𝑖 are pairwise orthogonal. 

For example, the calculation of 〈𝑥1, 𝑥4〉 and 〈𝑥3, 𝑥4〉 is as follows 

〈𝑥1, 𝑥4〉  ∫     ∙    2 
2𝜋

 
𝑑  [−

2

3
∙    3  −     ]

 

2𝜋
 0  

Details of the integration: 

∫     ∙    2 𝑑  ∫     ∙ (   2  −    2  ) 𝑑  ∫     ∙ (2   2  − 1) 𝑑    

 −2∫−    ∙    2  𝑑 − ∫     𝑑  −
2

3
∙    3  −       

〈𝑥3, 𝑥4〉  ∫    2 ∙    2 

2𝜋

 

𝑑  [−
1

8
∙    4 ]

 

2𝜋

 0 

Details of the integration: 

∫   2 ∙    2 𝑑  
1

2
∫   4 𝑑  −

1

8
∙    4  

The norm of all the four functions is √𝜋. 
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To get the norm it is more convenient to calculate ‖𝑥𝑖‖
2, 𝑖  1,2,3,4 as follows 

‖𝑥1‖
2  ∫    2  

2𝜋

 

𝑑  
1

2
∙ ∫ (1 −    2 )

2𝜋

 

𝑑  
1

2
∙ [ −

1

2
∙    2 ]

 

2𝜋

 𝜋 

‖𝑥2‖
2  ∫    2  

2𝜋

 

𝑑  
1

2
∙ ∫ (1     2 )

2𝜋

 

𝑑  
1

2
∙ [  

1

2
∙    2 ]

 

2𝜋

 𝜋 

‖𝑥3‖
2  ∫    2 2 

2𝜋

 

𝑑  
1

2
∙ ∫ (1 −    4 )

2𝜋

 

𝑑  
1

2
∙ [ −

1

4
∙    4 ]

 

2𝜋

 𝜋 

‖𝑥4‖
2  ∫    2 2 

2𝜋

 

𝑑  
1

2
∙ ∫ (1     4 )

2𝜋

 

𝑑  
1

2
∙ [  

1

4
∙    4 ]

 

2𝜋

 𝜋 

That is, ‖𝑥𝑖‖  √𝜋, 𝑖  1,2,3,4. 
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Example 

Consider the following functions in 𝐿2([0, 𝜋]): 

𝜓( )     2 ,  ∈ [0, 𝜋] 𝑥1( )  {
1     ∈ [0,

𝜋

2
[

−1     ∈ [
𝜋

2
, 𝜋]

 

𝑥2( )  {
1     ∈ [0,

𝜋

4
[      ∈ [

𝜋

2
,
3𝜋

4
[

−1     ∈ [
𝜋

4
,
𝜋

2
[      ∈ [

3𝜋

4
, 𝜋]

 𝑥3( )  {
1     ∈ [0,

𝜋

3
[      ∈ [

2𝜋

3
, 𝜋]

−1     ∈ [
𝜋

3
,
2𝜋

3
[

 

Calculate the inner product of 𝜓 with 𝑥1, 𝑥2 and 𝑥3, respectively, and compare the similarity 
of 𝜓 with the three functions. 

𝜓  

 

𝑥1 

 



2

0

1

1−



2

0

1

1−
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𝑥2 

 

𝑥3 

 

The inner product of 𝜓 with 𝑥1, 𝑥2 and 𝑥3 are 

〈𝑥1, 𝜓〉  ∫ 𝑥1( ) ∙ 𝜓( )

𝜋

 

𝑑  ∫    2 

𝜋
2

 

𝑑 − ∫    2 

𝜋

𝜋
2

𝑑  −
1

2
∙ [   2 ] 

𝜋
2  

1

2
∙ [   2 ]𝜋

2

𝜋  2 

〈𝑥2, 𝜓〉  ∫ 𝑥2( ) ∙ 𝜓( )

𝜋

 

𝑑  ∫    2 

𝜋
4

 

𝑑 − ∫    2 

𝜋
2

𝜋
4

𝑑  ∫    2 

3𝜋
4

𝜋
2

𝑑 − ∫    2 

𝜋

3𝜋
4

𝑑  0 

〈𝑥3, 𝜓〉  ∫ 𝑥3( ) ∙ 𝜓( )

𝜋

 

𝑑  ∫    2 

𝜋
3

 

𝑑 − ∫    2 

2𝜋
3

𝜋
3

𝑑  ∫    2 

𝜋

2𝜋
3

𝑑  1 



2

0

1

1−

4



4

3 
2

0

1

1−

3

2
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That is, 0  〈𝑥2, 𝜓〉 < 〈𝑥3, 𝜓〉 < 〈𝑥1, 𝜓〉. 

This result implies that the similarity is the highest between 𝑥1 and 𝜓, while 𝑥2 and 𝜓 are 
not similar (actually, they are orthogonal). 
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3rd week – Questions 
 

Question 1 

Give the inner product of functions in 𝐿2(𝐼) 

Answer 

〈𝑓, 𝑔〉  ∫(𝑓 ∙ 𝑔∗)

𝐼
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Question 2 

Give the norm in 𝐿2(𝐼) 

Answer 

‖𝑓‖  √〈𝑓, 𝑓〉  √∫ |𝑓|2
𝐼

. 
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Question 3 

Give the concept of orthogonality in 𝐿2(𝐼) 

Answer 

Functions 𝑥 ∈ 𝐿2(𝐼) and 𝜓 ∈ 𝐿2(𝐼)  are orthogonal if 

〈𝑥, 𝜓〉  ∫(𝑥 ∙ 𝜓∗)

𝐼

 0. 
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3rd week – Exercises 
Exercise 

Give the decomposition of vector   (
1
2
3
) with respect to the orthonormal system 

{𝑎1  (

1/3
2/3
−2/3

) , 𝑎2  (

−2/3
2/3
1/3

) , 𝑎3  (

2/3
1/3
2/3

)} 

Solution 

 1  〈 , 𝑎1〉  −
1

3
 

 

 2  〈 , 𝑎2〉  
5

3
   −

1

3
∙ 𝑎1  

5

3
∙ 𝑎2  

10

3
∙ 𝑎3 

 3  〈 , 𝑎3〉  
10

3
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Exercise 

Let 

𝑥  (
2
3
−4

) ,   𝑦  (
−5
1
−1

),   𝑏1  (

1/√3

1/√3

1/√3

),    𝑏2  (

1/√6

1/√6

−2/√6

),   𝑏3  (
−1/√2

1/√2
0

) 

Is the system {𝑏1, 𝑏2, 𝑏3} orthonormal? 

If yes, give the decomposition of 𝑥 with respect to system {𝑏1, 𝑏2, 𝑏3}. 

Solution 

System {𝑏1, 𝑏2, 𝑏3} is orthonormal, since on the one hand 

‖𝑏1‖  √
1

3
 
1

3
 
1

3
 1,   ‖𝑏2‖  √

1

6
 
1

6
 
4

6
 1,   ‖𝑏3‖  √

1

2
 
1

2
 0  1, 

on the other hand 

〈𝑏1, 𝑏2〉  
1

√3
∙
1

√6
 

1

√3
∙
1

√6
 

1

√3
∙ (−

2

√6
)  0. 

〈𝑏1, 𝑏3〉  
1

√3
∙ (−

1

√2
)  

1

√3
∙
1

√2
 

1

√3
∙ 0  0. 
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〈𝑏2, 𝑏3〉  
1

√6
∙ (−

1

√2
)  

1

√6
∙
1

√2
 (−

2

√6
) ∙ 0  0. 

that is, vectors 𝑏𝑖 are pairwise orthogonal. 

The inner products of 𝑥 and the elements of the system are 

〈𝑥, 𝑏1〉  
1

√3
,   〈𝑥, 𝑏2〉  

13

√6
,   〈𝑥, 𝑏3〉  

1

√2
 

so the decomposition of 𝑥 with respect to the orthonormal system {𝑏1, 𝑏2, 𝑏3} is 

𝑥  
1

√3
∙ 𝑏1  

13

√6
∙ 𝑏2  

1

√2
∙ 𝑏3 
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Exercise 

Calculate the inner product of the given pairs of functions 

𝒂 𝑓( )  200 𝑔( )     (0.001 ∙  )  ∈ [0,1] 

𝒃 𝑓( )  𝑒1 ∙𝑡 𝑔( )     (100𝜋 ∙  )  ∈ [0,1] 

𝒄 𝑓( )  (15  𝑖) ∙   𝑔( )  𝑒4𝜋∙𝑖∙𝑡  ∈ [0,1] 

Solution a 

〈𝑓, 𝑔〉  ∫200 ∙    (0.001 ∙  )

1

 

𝑑  200000 ∙ [   (0.001 ∙  )] 
1  200000 ∙    (0.001)

≈ 100 

Solution b 

〈𝑓, 𝑔〉  ∫𝑒1 ∙𝑡 ∙    (100𝜋 ∙  )

1

 

𝑑   

 
1

1  100𝜋2
∙ [
1

10
∙ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) − 𝜋 ∙ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  )]

 

1

 
𝜋 ∙ (1 − 𝑒1 )

1  100𝜋2
 

Details of the integration: 
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∫𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) 𝑑  
1

10
∙ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) − 10𝜋 ∙ ∫ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) 𝑑   

[
𝑔( )     (100𝜋 ∙  ) ⟹ 𝑔′( )  100𝜋 ∙    (100𝜋 ∙  )

𝑓′( )  𝑒1 ∙𝑡 ⟹ 𝑓( )  
1

10
∙ 𝑒1 ∙𝑡

] 

[
𝑔( )     (100𝜋 ∙  ) ⟹ 𝑔′( )  −100𝜋 ∙    (100𝜋 ∙  )

𝑓′( )  𝑒1 ∙𝑡 ⟹ 𝑓( )  
1

10
∙ 𝑒1 ∙𝑡

] 

 
1

10
∙ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) − 10𝜋 ∙ (

1

10
∙ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  )  10𝜋 ∙ ∫ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) 𝑑 )   

 
1

10
∙ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) − 𝜋 ∙ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) − 100𝜋2 ∙ ∫ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) 𝑑  

∫𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) 𝑑   

 
1

10
∙ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) − 𝜋 ∙ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) − 100𝜋2 ∙ ∫ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) 𝑑  

(1  100𝜋2) ∙ ∫ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) 𝑑  
1

10
∙ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) − 𝜋 ∙ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) 

∫𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) 𝑑  
1

1  100𝜋2
∙ (

1

10
∙ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  ) − 𝜋 ∙ 𝑒1 ∙𝑡 ∙    (100𝜋 ∙  )) 

Solution c 
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〈𝑓, 𝑔〉  ∫(15  𝑖) ∙  ∙ 𝑒4𝜋∙𝑖∙𝑡
1

 

𝑑  [(
1 − 15 ∙ 𝑖

4𝜋
∙   

15  𝑖

16𝜋2
) ∙ 𝑒4𝜋∙𝑖∙𝑡]

 

1

  

 (
1 − 15 ∙ 𝑖

4𝜋
 
15  𝑖

16𝜋2
) ∙ 𝑒4𝜋∙𝑖 −

15  𝑖

16𝜋2
 
1 − 15 ∙ 𝑖

4𝜋
 

Details of the integration: 

∫(15  𝑖) ∙  ∙ 𝑒4𝜋∙𝑖∙𝑡 𝑑  (15  𝑖) ∙ ∫  ∙ 𝑒4𝜋∙𝑖∙𝑡 𝑑  (15  𝑖) ∙ (
1

4𝜋 ∙ 𝑖
∙  ∙ 𝑒4𝜋∙𝑖∙𝑡 −

1

4𝜋 ∙ 𝑖
∙ ∫ 𝑒4𝜋∙𝑖∙𝑡 𝑑 )

  

[
𝑔( )   ⟹ 𝑔′( )  1

𝑓′( )  𝑒4𝜋∙𝑖∙𝑡 ⟹ 𝑓( )  
1

4𝜋 ∙ 𝑖
∙ 𝑒4𝜋∙𝑖∙𝑡

] 

 (15  𝑖) ∙ (
1

4𝜋 ∙ 𝑖
∙  ∙ 𝑒4𝜋∙𝑖∙𝑡 −

1

(4𝜋 ∙ 𝑖)2
∙ 𝑒4𝜋∙𝑖∙𝑡)  (

1 − 15 ∙ 𝑖

4𝜋
∙   

15  𝑖

16𝜋2
) ∙ 𝑒4𝜋∙𝑖∙𝑡 
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Exercise 

Show that functions 

𝑥1( )     (
6𝜋

𝑇
∙  )       d     𝑥2( )     (

6𝜋

𝑇
∙  ) 

are orthogonal in 𝐿2([0, 𝑇]) space. Give the norm of 𝑥2. 

Solution 

〈𝑥1, 𝑥2〉  ∫(   (
6𝜋

𝑇
∙  ) ∙    (

6𝜋

𝑇
∙  ))

𝑇

 

𝑑  
1

2
∙ ∫    (

12𝜋

𝑇
∙  )

𝑇

 

𝑑 

 −
1

2
∙
𝑇

12𝜋
∙ [   (

12𝜋

𝑇
∙  )]

 

𝑇

 −
𝑇

24𝜋
∙ (1 − 1)  0 

‖𝑥2‖
2  ∫   2 (

6𝜋

𝑇
∙  )

𝑇

 

𝑑  
1

2
∙ ∫ 1     (

12𝜋

𝑇
∙  )

𝑇

 

𝑑  
1

2
∙ [  

𝑇

12𝜋
∙    (

12𝜋

𝑇
∙  )]

 

𝑇

 
𝑇

2
 

‖𝑥2‖  √
𝑇

2
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Exercise 

Show that functions 

𝑥1( )  
1

√𝑇
∙ 𝑒𝑖∙

6𝜋
𝑇
∙𝑡      d     𝑥2( )  

1

√𝑇
∙ 𝑒𝑖∙

1 𝜋
𝑇

∙𝑡 

are orthogonal in 𝐿2([0, 𝑇]) space. Give the norm of 𝑥2. 

Solution 

〈𝑥1, 𝑥2〉  ∫(
1

√𝑇
∙ 𝑒𝑖∙

6𝜋
𝑇
∙𝑡 ∙

1

√𝑇
∙ 𝑒−𝑖∙

1 𝜋
𝑇

∙𝑡)

𝑇

 

𝑑  
1

𝑇
∙ ∫ 𝑒𝑖∙

−4𝜋
𝑇

∙𝑡

𝑇

 

𝑑   

 
1

𝑇
∙

1

𝑖 ∙
−4𝜋
𝑇

∙ [𝑒𝑖∙
−4𝜋
𝑇

∙𝑡]
 

𝑇

 
−1

4𝜋 ∙ 𝑖
∙ (𝑒−4𝜋∙𝑖 − 1)  0 

‖𝑥2‖
2  ∫(

1

√𝑇
∙ 𝑒𝑖∙

1 𝜋
𝑇

∙𝑡 ∙
1

√𝑇
∙ 𝑒−𝑖∙

1 𝜋
𝑇

∙𝑡)

𝑇

 

𝑑  ∫
1

𝑇

𝑇

 

𝑑  1 
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4th week 
 

4 Orthonormal Systems, Fourier Series, Trigonometric System 
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Orthonormal Systems 

Let 𝐼 be an interval. A sequence of functions { 𝑗}𝑗∈ℕ ⊂ 𝐿2(𝐼) is orthonormal if its elements 

are pairwise orthogonal and the norm of each element is 1. 

Remark 

An orthonormal sequence is also called orthonormal system. 

Remark 

In the definition of orthonormal sequences (systems) we can write ℤ or ℕ ∪ {0} instead of 
ℕ. For example, in the case of the exponential system we have 𝑗 ∈ ℤ, while in the case of the 
trigonometric system we write 𝑗 ∈ ℕ or 𝑗 ∈ ℕ ∪ {0}.   

The Fourier coefficients of a function 𝑥 ∈ 𝐿2(𝐼) with respect to the orthonormal system 

{ 𝑗}𝑗∈ℕ ⊂ 𝐿2(𝐼) are 

�̂�𝑘  〈𝑥,  𝑘〉  ∫(𝑥 ∙  𝑘
∗)

𝐼

,   𝑘 ∈ ℕ 

The series of functions 

ℱ𝒮(𝑥)  ∑(�̂�𝑘 ∙  𝑘)

∞

𝑘=1

 ∑(〈𝑥,  𝑘〉 ∙  𝑘)

∞

𝑘=1
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is called the Fourier series of 𝑥 with respect to the orthonormal system { 𝑗}𝑗∈ℕ.  

The connection between 𝑥 ∈ 𝐿2(𝐼) and ℱ𝒮(𝑥) is important in the Fourier theory. In 𝐿2 we 
say that 𝑥  ∑ (�̂�𝑘 ∙  𝑘)

∞
𝑘=1  if    

𝑛→∞
‖𝑥 − ∑ (�̂�𝑘 ∙  𝑘)

𝑛
𝑘=1 ‖  0. An orthonormal system 

{ 𝑗}𝑗∈ℕ ⊂ 𝐿2(𝐼) is called complete if 𝑥  ℱ𝒮(𝑥) for all 𝑥 ∈ 𝐿2(𝐼). 

From the point of view of engineering practice, it is generally enough to know that the 
Fourier series of a piecewise continuous function converges to the value of the function at 
every point   where the function is continuous (    

𝑛→∞
∑ �̂�𝑘 ∙  𝑘( )
𝑛
𝑘=1  𝑥( )) and converges 

to the midpoint of the discontinuity (the average of the left- and right-hand limits) wherever 
the function is discontinuous. 

The Parseval equality 

‖𝑥‖2  ∑ |�̂�𝑘|
2

∞

𝑘=−∞

 

states that the square norm of a function (energy content of a signal) can be calculated 
directly from its Fourier coefficients. 
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The Trigonometric System 

The Orthonormal Trigonometric System 

Let 𝑇 > 0. System of functions 

{CONST( )  
1

√𝑇
, COS𝑘( )   

√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  ) , SIN𝑘( )  

√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  )}

k∈ℕ

 

is orthonormal in 𝐿2([0, 𝑇]). 

𝑇-periodic functions 

 →
√2

√𝑇
∙    (

2𝜋

𝑇
∙  )      d    →

√2

√𝑇
∙    (

2𝜋

𝑇
∙  ) 

of ‘frequency’ 𝑓  
1

𝑇
 are called the basic functions of the system, while 𝑇/𝑘-periodic 

functions 

 →
√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  ) ,      →

√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  ) ,   𝑘  2,3, … 

of frequency 𝑘 ∙ 𝑓  𝑘/𝑇 are the harmonics. 
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The Fourier series of a function 𝑥 ∈ 𝐿2([0, 𝑇]) with respect to the orthonormal 
trigonometric system is 

ℱ𝒮(𝑥)( )  �̂� ∙ CONST  ∑ �̂�𝑘 ∙ COS𝑘( )

∞

𝑘=1

 ∑ �̂�𝑘 ∙ SIN𝑘( )

∞

𝑘=1

, 

where 

�̂�  〈𝑥, CONST〉  ∫𝑥( ) ∙ CONST( )

𝑇

 

𝑑  ∫𝑥( ) ∙
1

√𝑇

𝑇

 

𝑑  

�̂�𝑘  〈𝑥, COS𝑘〉  ∫𝑥( ) ∙ COS𝑘( )

𝑇

 

𝑑  ∫𝑥( ) ∙ (
√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  ))

𝑇

 

𝑑 ,   𝑘  1,2, … 

�̂�𝑘  〈𝑥, SIN𝑘〉  ∫𝑥( ) ∙ SIN𝑘( )

𝑇

 

𝑑  ∫𝑥( ) ∙ (
√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  ))

𝑇

 

𝑑 ,   𝑘  1,2, … 

�̂� , �̂�𝑘 and �̂�𝑘, 𝑘  1,2, … are the Fourier coefficients of 𝑥 with respect to the orthonormal 
trigonometric system. 

  



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 118 

In the special case 𝑇  2𝜋 the orthonormal trigonometric system is 

{CONST( )  
1

√2𝜋
, COS𝑘( )   

1

√𝜋
∙    (𝑘 ∙  ) , SIN𝑘( )  

1

√𝜋
∙    (𝑘 ∙  )}

𝑘∈ℕ

 

and the Fourier coefficients of 𝑥 are 

�̂�  ∫ 𝑥( ) ∙
1

√2𝜋

2𝜋

 

𝑑  

�̂�𝑘  ∫ 𝑥( ) ∙ ( 
1

√𝜋
∙    (𝑘 ∙  ))

2𝜋

 

𝑑 ,   𝑘  1,2, … 

�̂�𝑘  ∫ 𝑥( ) ∙ (
1

√𝜋
∙    (𝑘 ∙  ))

2𝜋

 

𝑑 ,   𝑘  1,2, … 

If function 𝑥 is odd, then �̂�𝑘  0, 𝑘  0,1,2, … , if 𝑥 is even, then �̂�𝑘  0, 𝑘  1,2, … 

The Parseval’s equality in the case of the orthonormal trigonometric system is 

‖𝑥‖2  ∫𝑥2
𝑇

 

 �̂� 
2  ∑ �̂�𝑘

2

∞

𝑘=1

 ∑ �̂�𝑘
2

∞

𝑘=1
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Remark: When calculating the Fourier coefficients of the 𝑇-periodic functions with respect 
to the orthonormal trigonometric system we can take the integrals on any interval of length 

𝑇. E.g. we often do the calculations on interval [−
𝑇

2
,
𝑇

2
]. 
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Example 

Let 𝑇 > 0. Show that the system of functions 

{CONST( )  
1

√𝑇
, COS𝑘( )   

√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  ) , SIN𝑘( )  

√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  )}

k∈ℕ

 

is orthonormal in 𝐿2([0, 𝑇]). 

Solution 

∫CONST2( )

𝑇

 

d  ∫
1

𝑇

𝑇

 

𝑑  1 

∫COS𝑘
2( )

𝑇

 

d  ∫
2

𝑇
∙    2 (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

d  
1

𝑇
∙ ∫ (1     (𝑘 ∙

4𝜋

𝑇
∙  ))

𝑇

 

d   

 
1

𝑇
∙ [  

𝑇

4𝜋 ∙ 𝑘
∙    (𝑘 ∙

4𝜋

𝑇
∙  )]

 

𝑇

 1 

∫SINC𝑘
2( )

𝑇

 

d  ∫
2

𝑇
∙    2 (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

d  
1

𝑇
∙ ∫ (1 −    (𝑘 ∙

4𝜋

𝑇
∙  ))

𝑇

 

d   
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1

𝑇
∙ [ −

𝑇

4𝜋 ∙ 𝑘
∙    (𝑘 ∙

4𝜋

𝑇
∙  )]

 

𝑇

 1 

If 𝑘 ≠ 𝑛  

∫COS𝑘( ) ∙ SIN𝑛( )

𝑇

 

𝑑  
2

𝑇
∙ ∫    (𝑘 ∙

2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑   

 
𝑘

𝑘2 − 𝑛2
∙
𝑇

2𝜋
∙ [   (𝑘 ∙

2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  )]

 

𝑇

  

 
1

𝑘2 − 𝑛2
∙
𝑛 ∙ 𝑇

2𝜋
∙ [   (𝑘 ∙

2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  )]

 

𝑇

  

 
𝑘

𝑘2 − 𝑛2
∙
𝑇

2𝜋
∙ (   (𝑘 ∙ 2𝜋) ∙    (𝑛 ∙ 2𝜋) −    0 ∙    0)   

 
1

𝑘2 − 𝑛2
∙
𝑛 ∙ 𝑇

2𝜋
∙ (   (𝑘 ∙ 2𝜋) ∙    (𝑛 ∙ 2𝜋) −    0 ∙    0)  0 
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Details of the integration: 

∫   (𝑘 ∙
2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  ) 𝑑   

[
 
 
 
 𝑔( )     (𝑛 ∙

2𝜋

𝑇
∙  ) ⟹ 𝑔′( )  𝑛 ∙

2𝜋

𝑇
∙    (𝑛 ∙

2𝜋

𝑇
∙  )

𝑓′( )     (𝑘 ∙
2𝜋

𝑇
∙  ) ⟹ 𝑓( )  

1

𝑘 ∙
2𝜋
𝑇

∙    (𝑘 ∙
2𝜋

𝑇
∙  )

]
 
 
 
 

 

 
1

𝑘 ∙
2𝜋
𝑇

∙    (𝑘 ∙
2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  ) −

𝑛

𝑘
∙ ∫    (𝑘 ∙

2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  ) 𝑑   

[
 
 
 
 𝑔( )     (𝑛 ∙

2𝜋

𝑇
∙  ) ⟹ 𝑔′( )  −𝑛 ∙

2𝜋

𝑇
∙    (𝑛 ∙

2𝜋

𝑇
∙  )

𝑓′( )     (𝑘 ∙
2𝜋

𝑇
∙  ) ⟹ 𝑓( )  −

1

𝑘 ∙
2𝜋
𝑇

∙    (𝑘 ∙
2𝜋

𝑇
∙  )

]
 
 
 
 

 

 
1

𝑘 ∙
2𝜋
𝑇

∙    (𝑘 ∙
2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  ) − 

−
𝑛

𝑘
∙ (−

1

𝑘 ∙
2𝜋
𝑇

∙    (𝑘 ∙
2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  ) −

𝑛

𝑘
∙ ∫    (𝑘 ∙

2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  ) 𝑑 )   
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1

𝑘 ∙
2𝜋
𝑇

∙    (𝑘 ∙
2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  )   

 
𝑛

𝑘2 ∙
2𝜋
𝑇

∙    (𝑘 ∙
2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  )  

𝑛2

𝑘2
∙ ∫    (𝑘 ∙

2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  ) 𝑑  

(1 −
𝑛2

𝑘2
) ∙ ∫    (𝑘 ∙

2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  ) 𝑑   

 
1

𝑘 ∙
2𝜋
𝑇

∙    (𝑘 ∙
2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  )  

𝑛

𝑘2 ∙
2𝜋
𝑇

∙    (𝑘 ∙
2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  ) 

∫   (𝑘 ∙
2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  ) 𝑑   

 
𝑘

𝑘2 − 𝑛2
∙
𝑇

2𝜋
∙    (𝑘 ∙

2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  )  

1

𝑘2 − 𝑛2
∙
𝑛 ∙ 𝑇

2𝜋
∙    (𝑘 ∙

2𝜋

𝑇
∙  ) ∙    (𝑛 ∙

2𝜋

𝑇
∙  ) 

We can show similarly that 

∫SIN𝑘( ) ∙ SIN𝑛( )

𝑇

 

𝑑  0       d     ∫ COS𝑘( ) ∙ COS𝑛( )

𝑇

 

𝑑  0 
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Example 

Calculate the Fourier coefficients of the 2𝜋-periodic function 
𝑥 defined as 

𝑥( )   ,     − 𝜋 ≤  < 𝜋 

with respect to the orthonormal trigonometric system. 

Use the Parseval’s equality to give the sum ∑
1

𝑘2
∞
𝑘=1 . 

 
Solution 

Since function 𝑥 is odd, �̂�𝑘  0, 𝑘  0,1,2, … 

�̂�𝑘  ∫  ∙ (
1

√𝜋
∙    (𝑘 ∙  ))

𝜋

−𝜋

𝑑  
1

√𝜋
∙ [−

1

𝑘
∙  ∙    (𝑘 ∙  )  

1

𝑘2
∙    (𝑘 ∙  )]

−𝜋

𝜋

  

 
1

√𝜋
∙ ((−

1

𝑘
∙ 𝜋 ∙    (𝑘 ∙ 𝜋)  

1

𝑘2
∙    (𝑘 ∙ 𝜋)) − (

1

𝑘
∙ 𝜋 ∙    (𝑘 ∙ 𝜋) −

1

𝑘2
∙    (𝑘 ∙ 𝜋)))   

 
1

√𝜋
∙ (−

2

𝑘
∙ 𝜋 ∙    (𝑘 ∙ 𝜋))  2 ∙ √𝜋 ∙ (−1)𝑘+1 ∙

1

𝑘
 

  

−𝜋 𝜋

𝜋
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Details of the calculation (integration by parts): 

∫ ∙    (𝑘 ∙  ) 𝑑  −
1

𝑘
∙  ∙    (𝑘 ∙  )  

1

𝑘
∙ ∫    (𝑘 ∙  ) 𝑑  −

1

𝑘
∙  ∙    (𝑘 ∙  )  

1

𝑘2
∙    (𝑘 ∙  ) 

[
𝑔( )   ⟹ 𝑔′( )  1

𝑓′( )     (𝑘 ∙  ) ⟹ 𝑓( )  −
1

𝑘
∙    (𝑘 ∙  )

] 

According to the Parseval’s equality 

‖𝑥‖2  ∫  2
𝜋

−𝜋

𝑑  ∑ �̂�𝑘
2

∞

𝑘=1

 4𝜋 ∙∑
1

𝑘2

∞

𝑘=1

 

Since ∫  2
𝜋

−𝜋
𝑑  

1

3
∙ [ 3]−𝜋

𝜋  
2

3
∙ 𝜋3 we have 

2

3
∙ 𝜋3  4𝜋 ∙∑

1

𝑘2

∞

𝑘=1

 

that is 

∑
1

𝑘2

∞

𝑘=1

 
𝜋2

6
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Example 

Calculate the Fourier coefficients of the 2-periodic function 
𝑥 defined as 

𝑥( )   2 ,     − 1 ≤  < 1 

with respect to the orthonormal trigonometric system. 
 

Solution 

Since function 𝑥 is even, �̂�𝑘  0, 𝑘  1,2, … 

�̂�  〈𝑥, CONST〉  ∫ 2 ∙
1

√2

1

−1

𝑑  
1

√2
∙
1

3
∙ [ 3]−1

1  
√2

3
 

�̂�𝑘  〈𝑥, COS𝑘〉  ∫  2 ∙ (   (𝑘 ∙ 𝜋 ∙  ))

1

−1

𝑑   

 [
1

𝑘 ∙ 𝜋
∙  2 ∙    (𝑘 ∙ 𝜋 ∙  )  

2

𝑘2 ∙ 𝜋2
∙  ∙    (𝑘 ∙ 𝜋 ∙  ) −

2

𝑘3𝜋3
∙    (𝑘 ∙ 𝜋 ∙  )]

−1

1

  

 (
1

𝑘 ∙ 𝜋
∙    (𝑘 ∙ 𝜋)  

2

𝑘2 ∙ 𝜋2
∙    (𝑘 ∙ 𝜋) −

2

𝑘3 ∙ 𝜋3
∙    (𝑘 ∙ 𝜋)) − 

−1 1

1
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−(−
1

𝑘 ∙ 𝜋
∙    (𝑘 ∙ 𝜋) −

2

𝑘2 ∙ 𝜋2
∙    (𝑘 ∙ 𝜋)  

2

𝑘3 ∙ 𝜋3
∙    (𝑘 ∙ 𝜋))   

 
2

𝑘 ∙ 𝜋
∙    (𝑘 ∙ 𝜋)  

4

𝑘2 ∙ 𝜋2
∙    (𝑘 ∙ 𝜋) −

4

𝑘3 ∙ 𝜋3
∙    (𝑘 ∙ 𝜋)  

4

𝑘2 ∙ 𝜋2
∙    (𝑘 ∙ 𝜋) 

�̂�𝑘  {

4

𝑘2 ∙ 𝜋2
   𝑘        

−
4

𝑘2 ∙ 𝜋2
   𝑘     dd

 

Details of the calculation (integration by parts): 

∫ 2 ∙ (   (𝑘 ∙ 𝜋 ∙  )) 𝑑  
1

𝑘𝜋
∙  2 ∙    (𝑘 ∙ 𝜋 ∙  ) −

2

𝑘𝜋
∙ ∫  ∙    (𝑘 ∙ 𝜋 ∙  ) 𝑑   

[
𝑔( )   2 ⟹ 𝑔′( )  2 

𝑓′( )     (𝑘 ∙ 𝜋 ∙  ) ⟹ 𝑓( )  
1

𝑘𝜋
∙    (𝑘 ∙ 𝜋 ∙  )

] 

[
𝑔( )   ⟹ 𝑔′( )  1

𝑓′( )     (𝑘 ∙ 𝜋 ∙  ) ⟹ 𝑓( )  −
1

𝑘𝜋
∙    (𝑘 ∙ 𝜋 ∙  )

] 

 
1

𝑘 ∙ 𝜋
∙  2 ∙    (𝑘 ∙ 𝜋 ∙  ) −

2

𝑘 ∙ 𝜋
∙ (−

1

𝑘 ∙ 𝜋
∙  ∙    (𝑘 ∙ 𝜋 ∙  )  

1

𝑘 ∙ 𝜋
∙ ∫    (𝑘 ∙ 𝜋 ∙  ) 𝑑 )   

 
1

𝑘 ∙ 𝜋
∙  2 ∙    (𝑘 ∙ 𝜋 ∙  )  

2

𝑘2 ∙ 𝜋2
∙  ∙    (𝑘 ∙ 𝜋 ∙  ) −

2

𝑘3 ∙ 𝜋3
∙    (𝑘 ∙ 𝜋 ∙  ) 
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The Trigonometric System 

Let 𝑇 > 0. System of functions 

{1,    (𝑘 ∙
2𝜋

𝑇
∙  ) ,    (𝑘 ∙

2𝜋

𝑇
∙  )}

𝑘∈ℕ
 

is orthogonal (but not orthonormal) in 𝐿2([0, 𝑇]). It is called the trigonometric system. 

The Fourier coefficients of a function 𝑥 ∈ 𝐿2([0, 𝑇]) with respect to the trigonometric 
system are 

�̂�  
1

𝑇
∙ ∫ 𝑥( )

𝑇

 

𝑑  

�̂�𝑘  
2

𝑇
∙ ∫ 𝑥( ) ∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑 ,   𝑘  1,2,… 

�̂�𝑘  
2

𝑇
∙ ∫ 𝑥( ) ∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑 ,   𝑘  1,2, … 

and the Fourier series of 𝑥 with respect to the trigonometric system is 
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ℱ𝒮(𝑥)( )  �̂�  ∑ �̂�𝑘 ∙    (𝑘 ∙
2𝜋

𝑇
∙  )

∞

𝑘=1

 ∑ �̂�𝑘 ∙    (𝑘 ∙
2𝜋

𝑇
∙  )

∞

𝑘=1

 

If function 𝑥 is odd, then �̂�𝑘  0, 𝑘  0,1,2, …, if 𝑥 is even, then �̂�𝑘  0, 𝑘  1,2, … 

In the special case 𝑇  2𝜋 the trigonometric system is 

{1,    (𝑘 ∙  ) ,    (𝑘 ∙  )}𝑘∈ℕ 

and the Fourier coefficients are 

�̂�  
1

2𝜋
∙ ∫ 𝑥( )

2𝜋

 

𝑑  

�̂�𝑘  
1

𝜋
∙ ∫ 𝑥( ) ∙    (𝑘 ∙  )

2𝜋

 

𝑑 ,   𝑘  1,2, … 

�̂�𝑘  
1

𝜋
∙ ∫ 𝑥( ) ∙    (𝑘 ∙  )

2𝜋

 

𝑑 ,   𝑘  1,2, … 
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Using the trigonometric equality 

𝐴 ∙    𝑥  𝐵 ∙    𝑥  √𝐴2  𝐵2 ∙    (𝑥   ) ,        {
     

𝑏

𝑎
,    𝑎 ≥ 0

     
𝑏

𝑎
 𝜋,    𝑎 < 0

 

an alternative form of the Fourier series is 

ℱ𝒮(𝑥)( )  �̂�  ∑ �̂�𝑘 ∙    (𝑘 ∙
2𝜋

𝑇
∙    𝑘)

∞

𝑘=1

, 

is obtained, where �̂�  �̂� , �̂�𝑘  √�̂�𝑘
2  �̂�𝑘

2, 𝑘  1,2, … and 

 𝑘  

{
 
 

 
      

�̂�𝑘
�̂�𝑘

,    �̂�𝑘 ≥ 0

     
�̂�𝑘
�̂�𝑘

 𝜋,    �̂�𝑘 < 0

 

is the phase of the harmonic belonging to index 𝑘. 
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Remark 

The use of this formula is that it contains at most one term (a sine function) of a certain 
frequency, while in the original formula two functions (a sine and a cosine) of the same 
frequency can appear. This fact is important in certain applications when the frequencies 
of the harmonic components (and the related amplitude) are in the focus. We have to note 
that the decompositions with respect to the exponential system also contains at most one 
term corresponding to a certain frequency. 

The graph of the constant function and the first four cosine and the first four sine functions 
of the trigonometric system belonging to the period 𝑇 on the interval [0, 𝑇] are 

 → 1 

 

 

 →    (
2𝜋

𝑇
∙  ) 

 

 →    (
2𝜋

𝑇
∙  ) 

 

𝑇

𝑇 𝑇
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 →    (2 ∙
2𝜋

𝑇
∙  ) 

 

 →    (2 ∙
2𝜋

𝑇
∙  ) 

 

 →    (3 ∙
2𝜋

𝑇
∙  ) 

 

 →    (3 ∙
2𝜋

𝑇
∙  ) 

 

 →    (4 ∙
2𝜋

𝑇
∙  ) 

 

 →    (4 ∙
2𝜋

𝑇
∙  ) 

 

 

𝑇 𝑇

𝑇 𝑇

𝑇 𝑇
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Example 

Determine the Fourier coefficients of the 2𝜋-periodic function 𝑥 defined as 

𝑥( )  {
0,     0

−
1

2
  

𝜋

2
,   0 <  < 2𝜋

 

 
with respect to the trigonometric system. 

Solution 

Function 𝑥 is odd, so �̂�𝑘  0, 𝑘  0,1,2, … 

We can get the coefficients �̂�𝑘 by integration by parts 

�̂�𝑘  
1

𝜋
∙ ∫ (−

1

2
  

𝜋

2
) ∙    (𝑘 ∙  )

2𝜋

 

𝑑   

 
1

𝜋
∙ [(

1

2𝑘
 −

𝜋

2𝑘
) ∙    (𝑘 ∙  ) −

1

2𝑘2
∙    (𝑘 ∙  )]

 

2𝜋

  

 
1

𝜋
∙ (((

𝜋

𝑘
−

𝜋

2𝑘
) ∙    (𝑘 ∙ 2𝜋) −

1

2𝑘2
∙    (𝑘 ∙ 2𝜋)) − (−

𝜋

2𝑘
∙    0 −

1

2𝑘2
∙    0))  

1

𝑘
 

2


−

2



2 4−2 t
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Details of the calculation (integration by parts): 

∫(−
1

2
  

𝜋

2
) ∙    (𝑘 ∙  ) 𝑑  −

1

𝑘
∙ (−

1

2
  

𝜋

2
) ∙    (𝑘 ∙  ) −

1

2𝑘
∙ ∫    (𝑘 ∙  ) 𝑑   

[
𝑔( )  −

1

2
  

𝜋

2
⟹ 𝑔′( )  −

1

2

𝑓′( )     (𝑘 ∙  ) ⟹ 𝑓( )  −
1

𝑘
∙    (𝑘 ∙  )

] 

 −
1

𝑘
∙ (−

1

2
  

𝜋

2
) ∙    (𝑘 ∙  ) −

1

2𝑘2
∙    (𝑘 ∙  )  (

1

2𝑘
 −

𝜋

2𝑘
) ∙    (𝑘 ∙  ) −

1

2𝑘2
∙    (𝑘 ∙  ) 

Since �̂�𝑘  0, 𝑘  0,1,2, … and �̂�𝑘  
1

𝑘
, 𝑘  1,2, … the Fourier series of 𝑥 is 

ℱ𝒮𝑥( )  ∑
   (𝑘 ∙  )

𝑘

∞

𝑘=1

. 

The sum of the first 5 terms and the sum of the first 10 terms in the Fourier series. 

 → ∑
   (𝑘 ∙  )

𝑘

5

𝑘=1

 

 

 → ∑
   (𝑘 ∙  )

𝑘

1 

𝑘=1

 

 

t

6 4 2 0 2 4 6 8 10 12
1

1

t

6 4 2 0 2 4 6 8 10 12
1

1
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4th week – Questions 
 

Question 1 

Give the orthonormal trigonometric system which is used for the decomposition of 𝑇-
periodic functions 

Answer 

{
1

√𝑇
,
√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  ) ,

√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  )}

k∈ℕ
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Question 2 

Give the Fourier series and the Fourier coefficients of function 𝑥 ∈ 𝐿2([0, 𝑇]) with respect to 
the orthonormal trigonometric system. 

Answer 

ℱ𝒮(𝑥)( )  �̂� ∙ CONST  ∑ �̂�𝑘 ∙ COS𝑘( )

∞

𝑘=1

 ∑ �̂�𝑘 ∙ SIN𝑘( )

∞

𝑘=1

, 

�̂�  〈𝑥, CONST〉  ∫𝑥( ) ∙ CONST( )

𝑇

 

𝑑  ∫𝑥( ) ∙
1

√𝑇

𝑇

 

𝑑  

�̂�𝑘  〈𝑥, COS𝑘〉  ∫𝑥( ) ∙ COS𝑘( )

𝑇

 

𝑑  ∫𝑥( ) ∙ (
√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  ))

𝑇

 

𝑑 ,   𝑘  1,2, … 

�̂�𝑘  〈𝑥, SIN𝑘〉  ∫𝑥( ) ∙ SIN𝑘( )

𝑇

 

𝑑  ∫𝑥( ) ∙ (
√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  ))

𝑇

 

𝑑 ,   𝑘  1,2, … 
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Question 3 

Give the Parseval’s equality in the case of the orthonormal trigonometric system. 

Answer 

‖𝑥‖2  ∫𝑥2
𝑇

 

 �̂� 
2  ∑ �̂�𝑘

2

∞

𝑘=1

 ∑ �̂�𝑘
2

∞

𝑘=1
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4th week – Exercises 
Exercise 

Determine the Fourier coefficients of the 2𝜋-periodic function 𝑥 defined as 

𝑥( )  {

0,   −𝜋 <  < 0
2,     0
4,   0 <  < 𝜋
2,     𝜋

 

 
with respect to the trigonometric system. 

Give the sum of the first 4 terms and the sum of the first 8 terms in the Fourier series. 

Solution 

�̂�  
1

2𝜋
∙ ∫ 4

𝜋

 

𝑑  2 

�̂�𝑘  
1

𝜋
∙ ∫ 4 ∙    (𝑘 ∙  )

𝜋

 

𝑑  
4

𝑘 ∙ 𝜋
∙ [   (𝑘 ∙  )] 

𝜋  0 

−𝜋 𝜋

4
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�̂�𝑘  
1

𝜋
∙ ∫ 4 ∙    (𝑘 ∙  )

𝜋

 

𝑑  
−4

𝑘 ∙ 𝜋
∙ [   (𝑘 ∙  )] 

𝜋  
4

𝑘 ∙ 𝜋
∙ (1 −    (𝑘 ∙ 𝜋)) 

We have that 

�̂�𝑘  {
8

𝑘 ∙ 𝜋
   𝑘     dd

0    𝑘        

 

writing the odd numbers 𝑘 in the form 𝑘  2𝑛 − 1 the Fourier series of 𝑥 is 

𝑥( )  2  
8

𝜋
∙ ∑

   ((2𝑛 − 1) ∙  )

2𝑛 − 1

∞

𝑛=1
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The two partial sums are 

 → 2  ∑
8

(2𝑘 − 1) ∙ 𝜋

4

𝑘=1

∙    ((2𝑘 − 1) ∙  )  → 2  ∑
8

(2𝑘 − 1) ∙ 𝜋

8

𝑘=1

∙    ((2𝑘 − 1) ∙  ) 

  
 

  

t

4 3 2 1 0 1 2 3 4

1

2

3

4

t

4 3 2 1 0 1 2 3 4

1

2

3

4
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Exercise 

Determine the Fourier coefficients of the 8-periodic function 𝑥 defined as 

𝑥( )  {
6    0 ≤  < 4
−2    4 ≤  < 8

 

 

Solution 

�̂�  
1

8
∙ ∫6

4

 

𝑑  
1

8
∙ ∫−2

8

4

𝑑  2 

�̂�𝑘  
1

4
∙ ∫6 ∙    (𝑘 ∙

𝜋

4
∙  )

4

 

𝑑  
1

4
∙ ∫−2 ∙    (𝑘 ∙

𝜋

4
∙  )

8

4

𝑑   

 
6

𝑘 ∙ 𝜋
∙ [   (𝑘 ∙

𝜋

4
∙  )]

 

4

−
2

𝑘 ∙ 𝜋
∙ [   (𝑘 ∙

𝜋

4
∙  )]

4

8

 0 

�̂�𝑘  
1

4
∙ ∫6 ∙    (𝑘 ∙

𝜋

4
∙  )

4

 

𝑑  
1

4
∙ ∫−2 ∙    (𝑘 ∙

𝜋

4
∙  )

8

4

𝑑   

84

6

−2
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−6

𝑘 ∙ 𝜋
∙ [   (𝑘 ∙

𝜋

4
∙  )]

 

4

 
2

𝑘 ∙ 𝜋
∙ [   (𝑘 ∙

𝜋

4
∙  )]

4

8

  

 
−6

𝑘 ∙ 𝜋
∙ (   (𝑘 ∙ 𝜋) − 1)  

2

𝑘 ∙ 𝜋
∙ (   (2𝑘 ∙ 𝜋) −    (𝑘 ∙ 𝜋)) 

�̂�𝑘  {
16

𝑘 ∙ 𝜋
   𝑘     dd

0    𝑘        

 

writing the odd numbers 𝑘 in the form 𝑘  2𝑛 − 1 the Fourier series of 𝑥 is 

𝑥( )  2  
16

𝜋
∙ ∑

   ((2𝑛 − 1) ∙
𝜋
4
∙  )

2𝑛 − 1

∞

𝑛=1
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Exercise 

Calculate the Fourier coefficient �̂�4 of the 2𝜋-periodic 
function 𝑥 defined as 

𝑥( )  {
0,     0

𝜋 −  ,   0 <  < 2𝜋
 

with respect to the trigonometric system. 
 

Solution 

�̂�4  
1

𝜋
∙ ∫ (𝜋 −  ) ∙    (4 ∙  )

2𝜋

 

𝑑   

 
1

𝜋
∙ [−

1

4
∙ (𝜋 −  ) ∙    (4 ∙  ) −

1

16
∙    (4 ∙  )]

 

2𝜋

 
1

𝜋
∙ (
𝜋

4
 
𝜋

4
)  

1

2
 

Details of the calculation (integration by parts): 

∫(𝜋 −  ) ∙    (4 ∙  ) 𝑑  −
1

4
∙ (𝜋 −  ) ∙    (4 ∙  ) −

1

4
∙ ∫    (4 ∙  ) 𝑑   

 −
1

4
∙ (𝜋 −  ) ∙    (4 ∙  ) −

1

16
∙    (4 ∙  ) 

2𝜋

𝜋

−𝜋
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[
𝑔( )  𝜋 −  ⟹ 𝑔′( )  −1

𝑓′( )     (4 ∙  ) ⟹ 𝑓( )  −
1

4
∙    (4 ∙  )

] 
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Exercise 

Calculate the Fourier coefficient �̂�1  of the 2-periodic function 
𝑥 defined as 

𝑥( )  {
1,    0 ≤  < 1

2 −  ,    1 <  < 2
 

with respect to the trigonometric system.  

Solution 

�̂�1  ∫𝑥( ) ∙    (10 ∙ 𝜋 ∙  )

2

 

𝑑  ∫   (10𝜋 ∙  )

1

 

𝑑  ∫(2 −  ) ∙    (10𝜋 ∙  )

2

1

𝑑   

 −
1

10𝜋
∙ [   (10𝜋 ∙  )] 

1  [
 − 2

10𝜋
∙    (10𝜋 ∙  ) −

1

100𝜋2
∙    (10𝜋 ∙  )]

1

2

 
1

10𝜋
 

Details of the calculation (integration by parts): 

∫(2 −  ) ∙    (10𝜋 ∙  ) 𝑑  −
1

10𝜋
∙ (2 −  ) ∙    (10𝜋 ∙  ) −

1

10𝜋
∙ ∫    (10𝜋 ∙  ) 𝑑   

 −
1

10𝜋
∙ (2 −  ) ∙    (10𝜋 ∙  ) −

1

100𝜋2
∙    (10𝜋 ∙  ) 

2

1

1
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[
𝑔( )  2 −  ⟹ 𝑔′( )  −1

𝑓′( )     (10𝜋 ∙  ) ⟹ 𝑓( )  −
1

10𝜋
∙    (10𝜋 ∙  )

] 
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Exercise 

Calculate the Fourier coefficient �̂�2 of the 1-periodic function 𝑥 
defined as 

𝑥( )  | | ,     −
1

2
≤  <

1

2
 

with respect to the trigonometric system. 
 

Solution 

�̂�2  2 ∙ ∫| | ∙    (2 ∙ 2𝜋 ∙  )

1
2

−
1
2

𝑑  4 ∙ ∫  ∙    (4𝜋 ∙  )

1
2

 

𝑑   

 4 ∙ [
1

4𝜋
∙  ∙    (4𝜋 ∙  )  

1

16𝜋2
∙    (4𝜋 ∙  )]

 

1/2

  

 4 ∙ (
1

4𝜋
∙
1

2
∙    (2𝜋)  

1

16𝜋2
∙    (2𝜋) −

1

16𝜋2
)  0 

Details of the calculation (integration by parts): 

∫ ∙    (4𝜋 ∙  ) 𝑑  
1

4𝜋
∙  ∙    (4𝜋 ∙  ) −

1

4𝜋
∙ ∫    (4𝜋 ∙  ) 𝑑   

−
1

2

1

2

1

2
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1

4𝜋
∙  ∙    (4𝜋 ∙  )  

1

16𝜋2
∙    (4𝜋 ∙  ) 

[
𝑔( )   ⟹ 𝑔′( )  1

𝑓′( )     (4𝜋 ∙  ) ⟹ 𝑓( )  
1

4𝜋
∙    (4𝜋 ∙  )

] 
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Exercise 

Calculate the Fourier coefficient �̂�9 of the 𝜋-periodic function 
𝑥 defined as 

𝑥( )  |    | ,     −
𝜋

2
≤  <

𝜋

2
 

with respect to the trigonometric system.  

Solution 

�̂�𝑘  
2

𝑇
∙ ∫ 𝑥( ) ∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑 , 

�̂�9  
2

𝜋
∙ ∫|    | ∙    (9 ∙ 2 ∙  )

𝜋
2

−
𝜋
2

𝑑  
4

𝜋
∙ ∫     ∙    (18 ∙  )

𝜋
2

 

𝑑   

 
4

𝜋
∙ [
18

323
∙     ∙    (18 ∙  )  

1

323
∙     ∙    (18 ∙  )]

 

𝜋/2

  

 
4

𝜋
∙ (

18

323
∙    

𝜋

2
∙    (9𝜋)  

1

323
∙    

𝜋

2
∙    (9𝜋) −

1

323
)  

−4

323 ∙ 𝜋
 

1

−
𝜋

2

𝜋

2
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Details of the calculation (integration by parts): 

∫    ∙    (18 ∙  ) 𝑑  
1

18
∙     ∙    (18 ∙  ) −

1

18
∙ ∫     ∙    (18 ∙  ) 𝑑   

 
1

18
∙     ∙    (18 ∙  ) −

1

18
∙ (−

1

18
∙     ∙    (18 ∙  ) −

1

18
∙ ∫     ∙    (18 ∙  ) 𝑑 )   

 
1

18
∙     ∙    (18 ∙  )  

1

324
∙     ∙    (18 ∙  )  

1

324
∙ ∫     ∙    (18 ∙  ) 𝑑  

[
𝑔( )      ⟹ 𝑔′( )      

𝑓′( )     (18 ∙  ) ⟹ 𝑓( )  
1

18
∙    (18 ∙  )

] 

[
𝑔( )      ⟹ 𝑔′( )  −     

𝑓′( )     (18 ∙  ) ⟹ 𝑓( )  −
1

18
∙    (18 ∙  )

] 

∫    ∙    (18 ∙  ) 𝑑 

 
1

18
∙     ∙    (18 ∙  )  

1

324
∙     ∙    (18 ∙  )  

1

324
∙ ∫     ∙    (18 ∙  ) 𝑑  

(1 −
1

324
) ∙ ∫     ∙    (18 ∙  ) 𝑑  

1

18
∙     ∙    (18 ∙  )  

1

324
∙     ∙    (18 ∙  ) 

∫    ∙    (18 ∙  ) 𝑑  
18

323
∙     ∙    (18 ∙  )  

1

323
∙     ∙    (18 ∙  ) 
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Exercise 

Determine the period of the signal 

𝑥( )  6 ∙    (
2𝜋

20
∙  )  12 ∙    (

2𝜋

30
∙  ) 

and give the Fourier coefficients �̂� , �̂�1, �̂�2, �̂�3, �̂�1, �̂�2, �̂�3. 

Solution 

Period of function  → 6 ∙    (
2𝜋

2 
∙  ) is 20, period of function  → 12 ∙    (

2𝜋

3 
∙  ) is 30. 

It is easy to see, that period of their sum is equal to the smallest common multiple of 20 
and 30, that is 𝑇  60. 

Now it is evident that signal 𝑥 contains two harmonic components, namely 

 → 6 ∙    (
2𝜋

20
∙  )  6 ∙    (3 ∙

2𝜋

60
∙  ) 

and 

 → 12 ∙    (
2𝜋

30
∙  )  12 ∙    (2 ∙

2𝜋

60
∙  ) 

thus �̂�3  6 and �̂�2  12. All other Fourier coefficients are equal to zero. 

We can calculate the Fourier coefficients according to the formulas. 𝑇  60 thus 
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�̂�3  
2

60
∙ ∫ (6 ∙    (

2𝜋

20
∙  )  12 ∙    (

2𝜋

30
∙  )) ∙    (3 ∙

2𝜋

60
∙  )

6 

 

𝑑   

 
12

60
∙ ∫    2 (

2𝜋

20
∙  )

6 

 

𝑑  
24

60
∙ ∫    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  )

6 

 

𝑑   

 
12

60
∙ [
1

2
∙ ( −

10

2𝜋
∙    (

2𝜋

10
∙  ))]

 

6 

  

 
24

60
∙ [−

18

𝜋
∙    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) −

6

5
∙    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  )]

 

6 

 6 

Details of the calculation 

∫   2 (
2𝜋

20
∙  ) 𝑑  

1

2
∙ ∫1 −    (

2𝜋

10
∙  ) 𝑑  

1

2
∙ ( −

10

2𝜋
∙    (

2𝜋

10
∙  )) 

∫   (
2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) 𝑑   

 −
20

2𝜋
∙    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) −

2

3
∙ ∫    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) 𝑑   
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[
𝑔( )     (

2𝜋

30
∙  ) ⟹ 𝑔′( )  −

2𝜋

30
∙    (

2𝜋

30
∙  )

𝑓′( )     (
2𝜋

20
∙  ) ⟹ 𝑓( )  −

20

2𝜋
∙    (

2𝜋

20
∙  )

] 

[
𝑔( )     (

2𝜋

30
∙  ) ⟹ 𝑔′( )  

2𝜋

30
∙    (

2𝜋

30
∙  )

𝑓′( )     (
2𝜋

20
∙  ) ⟹ 𝑓( )  

20

2𝜋
∙    (

2𝜋

20
∙  )

] 

 −
20

2𝜋
∙    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) − 

−
2

3
∙ (   (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) −

2

3
∙ ∫    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) 𝑑 )   

 −
20

2𝜋
∙    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) −

2

3
∙    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  )  

4

9
∙ ∫    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) 𝑑  

 

5

9
∙ ∫    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) 𝑑  −

20

2𝜋
∙    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) −

2

3
∙    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) 

∫   (
2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) 𝑑  −

18

𝜋
∙    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) −

6

5
∙    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) 
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�̂�2  
2

60
∙ ∫ (6 ∙    (

2𝜋

20
∙  )  12 ∙    (

2𝜋

30
∙  )) ∙    (2 ∙

2𝜋

60
∙  )

6 

 

𝑑   

 
12

60
∙ ∫    (

2𝜋

20
∙  ) ∙    (2 ∙

2𝜋

60
∙  )

6 

 

𝑑  
24

60
∙ ∫    2 (

2𝜋

30
∙  )

6 

 

𝑑   

 
12

60
∙ [
18

𝜋
∙    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) −

6

5
∙    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  )]

 

6 

  

 
24

60
∙ [
1

2
∙ (  

15

2𝜋
∙    (

2𝜋

15
∙  ))]

 

6 

 12 

Details of the calculation 

∫   2 (
2𝜋

30
∙  ) 𝑑  

1

2
∙ ∫1     (

2𝜋

15
∙  ) 𝑑  

1

2
∙ (  

15

2𝜋
∙    (

2𝜋

15
∙  )) 

∫   (
2𝜋

20
∙  ) ∙    (

2𝜋

30
∙  ) 𝑑  

18

𝜋
∙    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) −

6

5
∙    (

2𝜋

30
∙  ) ∙    (

2𝜋

20
∙  ) 

(see the same calculation above) 
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Exercise 

Give the spectrum of the following signals 

𝒂 𝑥( )  0.2 ∙    (250 ∙  − 5.6) − 4.52 ∙    (1250 ∙  − 3.2)  2.87 ∙    (800 ∙  ) 

𝒃 𝑥( )  100 ∙    (5.48 ∙  − 0.6)  55 ∙    (6.28 ∙  − 3)   

 21 ∙    (7.27 ∙   1)  66 ∙    ( − 1.9) 

Solution a 

 1  250 [
𝑟𝑎𝑑

𝑠
]  ⇒  𝑓1  

 1

2𝜋
 39.79[𝐻𝑧] 

 2  1250 [
𝑟𝑎𝑑

𝑠
]  ⇒  𝑓2  

 2

2𝜋
 198.95[𝐻𝑧] 

 3  800 [
𝑟𝑎𝑑

𝑠
]  ⇒  𝑓3  

 3

2𝜋
 127.33[𝐻𝑧] 

 
 

  

𝑓1  39.79 𝑓2=198.95

0.2

2.87

4.52

𝑓3=127.33 𝑓

𝑥
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Solution b 

 1  5.48 [
𝑟𝑎𝑑

𝑠
]  ⇒  𝑓1  

 1

2𝜋
 0.87[𝐻𝑧] 

 2  6.28 [
𝑟𝑎𝑑

𝑠
]  ⇒  𝑓2  

 2

2𝜋
 1[𝐻𝑧] 

 3  7.27 [
𝑟𝑎𝑑

𝑠
]  ⇒  𝑓3  

 3

2𝜋
 1.16[𝐻𝑧] 

 4  1 [
𝑟𝑎𝑑

𝑠
]  ⇒  𝑓4  

 4

2𝜋
 0.16[𝐻𝑧]  

 

 

  

𝑓1  0.87 𝑓2=1

66

100

21

𝑓3=1.16 𝑓

𝑥

𝑓4  0.16

55
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5th week 
 

5 Exponential System, Vibration Spectrum 
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The Exponential System 

The Orthonormal Exponential System 

Let 𝑇 > 0. System of functions 

{EXP𝑘( )  
1

√𝑇
∙ 𝑒𝑖∙𝑘∙

2𝜋
𝑇
∙𝑡}

𝑘∈ℤ

 

is orthonormal in 𝐿2([0, 𝑇]). This system is called orthonormal exponential system. 

Remark 

In the exponential system index 𝑘 is from ℤ, that is, there are negative indices as well. 

Remark 

Because of the periodic nature of the complex exponential function in the imaginary part of 

the variable the coefficients 𝑘 ∙
2𝜋

𝑇
 in the exponents have “frequency” meaning similarly to 

the elements of the trigonometric system (see in Appendix 1). 

The Fourier coefficients of a function 𝑥 ∈ 𝐿2([0, 𝑇]) with respect to the orthonormal 
exponential system are 

�̂�𝑘  〈𝑥, EXP𝑘〉  ∫𝑥( ) ∙ (
1

√𝑇
∙ 𝑒−𝑖∙𝑘∙

2𝜋
𝑇
∙𝑡)

𝑇

 

𝑑 ,     𝑘 ∈ ℤ, 

and the Fourier series (decomposition) of 𝑥 is 
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ℱ𝒮(𝑥)  ∑ (�̂�𝑘 ∙ EXP𝑘)

∞

𝑘=−∞

 ∑ (〈𝑥, EXP𝑘〉 ∙ EXP𝑘)

∞

𝑘=−∞

. 

Remark 

When calculating the Fourier coefficients of the 𝑇-periodic functions with respect to the 
orthonormal exponential system we can take the integrals on any interval of length 𝑇. E.g. 

we often do the calculations on interval [−
𝑇

2
,
𝑇

2
]. 
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Example 

Show that system of functions 

{EXP𝑘( )  
1

√𝑇
∙ 𝑒𝑖∙𝑘∙

2𝜋
𝑇
∙𝑡}

𝑘∈ℤ

 

is orthonormal in 𝐿2([0, 𝑇]). 

Solution 

For arbitrary 𝑘 ∈ ℤ we have 

‖EXP𝑘‖
2  ∫(

1

√𝑇
∙ 𝑒𝑖∙𝑘∙

2𝜋
𝑇
∙𝑡 ∙

1

√𝑇
∙ 𝑒−𝑖∙𝑘∙

2𝜋
𝑇
∙𝑡)

𝑇

 

𝑑  ∫
1

𝑇

𝑇

 

𝑑  1 

(we used that (𝑒𝑖∙𝛼)
∗
 𝑒−𝑖∙𝛼 , 𝛼 ∈ ℝ) 

For arbitrary 𝑘, 𝑙 ∈ ℤ, 𝑘 ≠ 𝑙 we have 

〈EXP𝑘 , EXP𝑙〉  ∫(
1

√𝑇
∙ 𝑒𝑖∙𝑘∙

2𝜋
𝑇
∙𝑡 ∙

1

√𝑇
∙ 𝑒−𝑖∙𝑙∙

2𝜋
𝑇
∙𝑡)

𝑇

 

𝑑  
1

𝑇
∙ ∫ 𝑒𝑖∙

(𝑘−𝑙)∙
2𝜋
𝑇
∙𝑡

𝑇

 

𝑑   

 
1

𝑇
∙

1

𝑖 ∙ (𝑘 − 𝑙) ∙
2𝜋
𝑇

∙ [𝑒𝑖∙(𝑘−𝑙)∙
2𝜋
𝑇
∙𝑡]

 

𝑇

 
1

2𝜋 ∙ 𝑖 ∙ (𝑘 − 𝑙)
∙ (𝑒2𝜋∙𝑖∙(𝑘−𝑙) − 1)  0 
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Exercise 

Give the Fourier series of 10-periodic function 𝑥 defined as 

𝑥( )  {
4,   0 <  < 5
0,   5 <  < 10
2,   𝑥 ∈ {0,5,10}

 

 
with respect to the orthonormal exponential system. 

Solution 

�̂�  〈𝑥, EXP 〉  ∫4 ∙
1

√10

5

 

𝑑  
20

√10
 

If 𝑘 ≠ 0 

�̂�𝑘  〈𝑥, EXP𝑘〉  ∫4 ∙ (
1

√10
∙ 𝑒−𝑖∙𝑘∙

2𝜋
1 

∙𝑡)

5

 

𝑑  
4

√10
∙

−10

2𝜋 ∙ 𝑖 ∙ 𝑘
∙ [𝑒−𝑖∙𝑘∙

2𝜋
1 

∙𝑡]
 

5

  

 
20 ∙ 𝑖

√10 ∙ 𝜋 ∙ 𝑘
∙ (𝑒−𝑖∙𝑘∙𝜋 − 1)  {

−40 ∙ 𝑖

√10 ∙ 𝜋 ∙ 𝑘
,   𝑘     dd 

0,   𝑘        , 𝑘 ≠ 0

 

50

4

2

t

x

10
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Using the notation 𝑘  2𝑙 − 1, 𝑙 ∈ ℤ the Fourier series of 𝑥 is 

ℱ𝒮𝑓(𝑥)( )  2  ∑ (
−40 ∙ 𝑖

√10 ∙ 𝜋 ∙ (2𝑙 − 1)
∙
1

√10
∙ 𝑒𝑖∙(2𝑙−1)∙

2𝜋
1 

∙𝑡)

∞

𝑙=−∞

  

 2  ∑ (
−4 ∙ 𝑖

𝜋 ∙ (2𝑙 − 1)
∙ 𝑒𝑖∙(2𝑙−1)∙

2𝜋
1 

∙𝑡)

∞

𝑙=−∞
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The Exponential System 

System of functions 

{𝑒𝑖∙𝑘∙
2𝜋
𝑇
∙𝑡}

𝑘∈ℤ
 

is orthogonal (but not orthonormal) in 𝐿2([0, 𝑇]). It is called exponential system. 

The (complex) Fourier coefficients of function 𝑥 ∈ 𝐿2([0, 𝑇]) with respect to the exponential 
system are 

�̂�𝑘  
1

𝑇
∙ ∫ 𝑥( ) ∙ 𝑒−𝑖∙𝑘∙

2𝜋
𝑇
∙𝑡

𝑇

 

𝑑 ,   𝑘 ∈ ℤ, 

the Fourier series of 𝑥 is  

ℱ𝒮(𝑥)( )  ∑ (�̂�𝑘 ∙ 𝑒
𝑖∙𝑘∙

2𝜋
𝑇
∙𝑡)

∞

𝑘=−∞

. 

Functions 𝑘 → |�̂�𝑘|, 𝑘 → |�̂�𝑘|
2, and 𝑘 →    �̂�𝑘 are called amplitude spectrum, energy 

spectrum and phase spectrum, respectively. 
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Example 

Calculate the Fourier coefficient �̂�5 of the 4-periodic 
function 𝑥 defined as 

𝑥( )  {
2,    2 <  < 3
0,              [0,4[

 

with respect to the exponential system.  

Solution 

�̂�5  
1

4
∙ ∫2 ∙ 𝑒−𝑖∙5∙

2𝜋
4
∙𝑡

3

2

𝑑  
1

4
∙
−2

5𝜋 ∙ 𝑖
∙ [𝑒−𝑖∙

5𝜋
2
∙𝑡]

 

4

  

 
−1

10𝜋 ∙ 𝑖
∙ (𝑒−𝑖∙1 𝜋 − 1)  

−1

10𝜋 ∙ 𝑖
∙ (   (−10𝜋)  𝑖 ∙    (−10𝜋) − 1)  0 

  

2 4

2

3
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Real and Complex Fourier Coefficients 

If 𝑥 ∈ 𝐿2([0, 𝑇]) is a real-valued function, we have 

�̂�−𝑘  �̂�𝑘
∗      𝑘 ∈ ℤ 

and, consequently 

|�̂�−𝑘|  |�̂�𝑘| ,     𝑘 ∈ ℤ 

showing that the complex spectrum has symmetric nature and the fact that the Fourier 
coefficients of a real-valued function belonging to ‘negative frequencies’ have not 
independent meaning. 

The complex spectrum is displayed in different ways. We can draw a “3D” diagram 
showing the complex values (the real and the imaginary part of the coefficients), or we 
can plot only the values |�̂�𝑘|, and finally we can plot values 2 ∙ |�̂�𝑘| on the non-negative 
frequency axis. 

 
Consider the orthonormal trigonometric system 

𝑓
𝑘  𝑓 

�̂�𝑘

𝑅𝑒 �̂�𝑘

𝐼𝑚 �̂�𝑘
�̂�𝑘

𝑘  𝑓 −𝑘  𝑓 

�̂�−𝑘
2  �̂�𝑘

𝑘  𝑓 

𝑓 𝑓
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{CONST( )  
1

√𝑇
, COS𝑘( )   

√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  ) , SIN𝑘( )  

√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  )}

k∈ℕ

 

and the orthonormal exponential system 

{EXP𝑘( )  
1

√𝑇
∙ 𝑒𝑖∙𝑘∙

2𝜋
𝑇
∙𝑡}

𝑘∈ℤ

 

in 𝐿2([0, 𝑇]). Since both the real and the complex Fourier coefficients (�̂�𝑘 , �̂�𝑘 , �̂�𝑘) belong to 

frequency 𝑘 ∙
2𝜋

𝑇
, they are expected to be connected. In fact 

�̂�  �̂� , 

furthermore the properties of sine, cosine and exponential functions imply that for 
𝑘 ∈ ℤ, 𝑘 > 0 we have 

�̂�𝑘  
1

√2
∙ (�̂�𝑘 − �̂�𝑘 ∙ 𝑖),     �̂�−𝑘  

1

√2
∙ (�̂�𝑘  �̂�𝑘 ∙ 𝑖),     d   |�̂�𝑘|  

1

√2
∙ √�̂�𝑘

2  �̂�𝑘
2. 

Considering the trigonometric system 

{1,    (𝑘 ∙
2𝜋

𝑇
∙  ) ,    (𝑘 ∙

2𝜋

𝑇
∙  )}

k∈ℕ
 

and the exponential system 

{𝑒𝑖∙𝑘∙
2𝜋
𝑇
∙𝑡}

𝑘∈ℤ
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the connection between the real and complex Fourier coefficients (�̂�𝑘 , �̂�𝑘 , �̂�𝑘) is as follows: 

�̂�  �̂� , 

furthermore, for 𝑘 ∈ ℤ, 𝑘 > 0, we have 

�̂�𝑘  
1

2
∙ (�̂�𝑘 − �̂�𝑘 ∙ 𝑖),     �̂�−𝑘  

1

2
∙ (�̂�𝑘  �̂�𝑘 ∙ 𝑖),     |�̂�𝑘|  

1

2
∙ √�̂�𝑘

2  �̂�𝑘
2. 
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Example 

Using the Euler formula 𝑒𝑖∙𝑡       𝑖 ∙     ,  ∈ ℝ show that 

�̂�𝑘  
1

√2
∙ (�̂�𝑘 − �̂�𝑘 ∙ 𝑖) 

�̂�𝑘  
1

√2
∙ (�̂�𝑘  �̂�𝑘 ∙ 𝑖) 

and 

|�̂�𝑘|  
1

2
∙ √�̂�𝑘

2  �̂�𝑘
2,   𝑘 ∈ ℤ, 𝑘 > 0 

Express �̂�𝑘  �̂�−𝑘 and 𝑖 ∙ (�̂�𝑘 − �̂�−𝑘), 𝑘 ∈ ℤ, 𝑘 > 0. 
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Solution 

Let 𝑘 ∈ ℤ, 𝑘 > 0. 

�̂�𝑘  ∫𝑥( ) ∙ (
1

√𝑇
∙ 𝑒−𝑖∙𝑘∙

2𝜋
𝑇
∙𝑡)

𝑇

 

𝑑   

 ∫𝑥( ) ∙
1

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑 − 𝑖 ∙ ∫ 𝑥( ) ∙
1

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑   

 
1

√2
∙ ∫ 𝑥( ) ∙

√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑 −
1

√2
∙ 𝑖 ∙ ∫ 𝑥( ) ∙

√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑 

 
1

√2
∙ �̂�𝑘 −

1

√2
∙ 𝑖 ∙ �̂�𝑘 

The sine function is odd while the cosine function is even thus 

�̂�−𝑘  ∫𝑥( ) ∙
1

√𝑇
∙    (−𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑 − 𝑖 ∙ ∫ 𝑥( ) ∙
1

√𝑇
∙    (−𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑   

 ∫𝑥( ) ∙
1

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑  𝑖 ∙ ∫ 𝑥( ) ∙
1

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑   
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1

√2
∙ ∫ 𝑥( ) ∙

√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑  
1

√2
∙ 𝑖 ∙ ∫ 𝑥( ) ∙

√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑 

 
1

√2
∙ �̂�𝑘  

1

√2
∙ 𝑖 ∙ �̂�𝑘 

�̂�𝑘  �̂�−𝑘  √2 ∙ �̂�𝑘 ,   𝑘 ∈ ℤ, 𝑘 > 0 

𝑖 ∙ (�̂�𝑘 − �̂�−𝑘)  √2 ∙ �̂�𝑘 ,   𝑘 ∈ ℤ, 𝑘 > 0 

In the formula �̂�𝑘  
1

√2
∙ �̂�𝑘 −

1

√2
∙ 𝑖 ∙ �̂�𝑘 we can see that 

R (�̂�𝑘)  
1

√2
∙ �̂�𝑘       d    I (�̂�𝑘)  −

1

√2
∙ �̂�𝑘, 

thus 

|�̂�𝑘|  √
1

2
∙ �̂�𝑘

2  
1

2
∙ �̂�𝑘

2  
1

√2
∙ √�̂�𝑘

2  �̂�𝑘
2 
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Example 

Using the formulas obtained in the previous exercise, manipulate the Fourier series of a 
function 𝑥 ∈ 𝐿2([0, 𝑇]) with respect to the orthonormal exponential system to get the 
Fourier series of 𝑥 with respect to the orthonormal trigonometric system. 

Solution 

ℱ𝒮(𝑥)  ∑ (�̂�𝑘 ∙ EXP𝑘)

∞

𝑘=−∞

 ∑ �̂�𝑘 ∙ (
1

√𝑇
∙ 𝑒𝑖∙𝑘∙

2𝜋
𝑇
∙𝑡)

∞

𝑘=−∞

  

 ∑ (�̂�𝑘 ∙
1

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  ))

∞

𝑘=−∞

 𝑖 ∙ ∑ (�̂�𝑘 ∙
1

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  ))

∞

𝑘=−∞

  

 �̂� ∙
1

√𝑇
 ∑((�̂�𝑘  �̂�−𝑘) ∙

1

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  ))

∞

𝑘=1

 ∑(𝑖 ∙ (�̂�𝑘 − �̂�−𝑘) ∙
1

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  ))

∞

𝑘=1

  

 �̂� ∙
1

√𝑇
 ∑(�̂�𝑘 ∙

√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  ))

∞

𝑘=1

 ∑(�̂�𝑘 ∙
√2

√𝑇
∙    (𝑘 ∙

2𝜋

𝑇
∙  ))

∞

𝑘=1

  

 �̂� ∙ CONST  ∑ �̂�𝑘 ∙ COS𝑘( )

∞

𝑘=1

 ∑ �̂�𝑘 ∙ SIN𝑘( )

∞

𝑘=1
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Example 

Using the Euler formula 𝑒𝑖∙𝑡       𝑖 ∙     ,  ∈ ℝ show that 

�̂�𝑘  
1

2
∙ (�̂�𝑘 − �̂�𝑘 ∙ 𝑖),     �̂�−𝑘  

1

2
∙ (�̂�𝑘  �̂�𝑘 ∙ 𝑖),     |�̂�𝑘|  

1

2
∙ √�̂�𝑘

2  �̂�𝑘
2. 

Solution 

Let 𝑘 ∈ ℤ, 𝑘 > 0. 

�̂�𝑘  
1

𝑇
∙ ∫ 𝑥( ) ∙ 𝑒−𝑖∙𝑘∙

2𝜋
𝑇
∙𝑡

𝑇

 

𝑑 

 
1

𝑇
∙ ∫ 𝑥( ) ∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑 − 𝑖 ∙
1

𝑇
∙ ∫ 𝑥( ) ∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑   

 
1

2
∙
2

𝑇
∙ ∫ 𝑥( ) ∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑 −
1

2
∙ 𝑖 ∙

2

𝑇
∙ ∫ 𝑥( ) ∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑  
1

2
∙ �̂�𝑘 −

1

2
∙ 𝑖 ∙ �̂�𝑘 . 

The sine function is odd while the cosine function is even thus 

�̂�−𝑘  
1

𝑇
∙ ∫ 𝑥( ) ∙    (−𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑 − 𝑖 ∙
1

𝑇
∙ ∫ 𝑥( ) ∙    (−𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑   



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 173 

 
1

𝑇
∙ ∫ 𝑥( ) ∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑  𝑖 ∙
1

𝑇
∙ ∫ 𝑥( ) ∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑   

 
1

2
∙
2

𝑇
∙ ∫ 𝑥( ) ∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑  
1

2
∙ 𝑖 ∙

2

𝑇
∙ ∫ 𝑥( ) ∙    (𝑘 ∙

2𝜋

𝑇
∙  )

𝑇

 

𝑑  
1

2
∙ �̂�𝑘  

1

2
∙ 𝑖 ∙ �̂�𝑘 . 

In the formula �̂�𝑘  
1

2
∙ �̂�𝑘 −

1

2
∙ 𝑖 ∙ �̂�𝑘 we can see that R (�̂�𝑘)  

1

2
∙ �̂�𝑘 and I (�̂�𝑘)  −

1

2
∙ �̂�𝑘 

thus 

|�̂�𝑘|  √
1

4
∙ �̂�𝑘

2  
1

4
∙ �̂�𝑘

2  
1

2
∙ √�̂�𝑘

2  �̂�𝑘
2. 
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In predictive maintenance of machinery the control of the propagation of failures in time is 
even more important than the determination of the actual status. The SPM system contains 
many graphical functions providing information about changes in time. 

One type of these diagrams shows some numerical values as a function of time and also the 
related control limits. These diagrams enable the visual control, when a high value of a 
parameter appears relevant maintenance actions can be scheduled.  

 [5] 

Another type of diagrams shows the change of graphs, for instance the change of the 
spectrum. When the amplitudes belonging to critical frequencies increase or new 
frequencies appear in the spectrum the root cause of the change must be identified to avoid 
the further propagation of the failure. 
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An important example is the so-called Waterfall diagram which is a three-dimensional 
display of up to 50 vibration spectra. The different readings are displayed along an axis, 
with the latest being the nearest the viewer. 

 [5] 
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 [5] 
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With the Compare spectrum function we can view 
more than one frequency range and/or resolution at a 
time. This means that we can implement a variable 
frequency range from one measuring assignment to 
another and also between measuring points. 

 

 [5] 

The Coloured Spectrum Overview is a three-dimensional view of all spectra under a 
particular measuring assignment. Its purpose is to simplify the process of identifying in 
spectra the patterns and trends which indicate damages. In the Coloured Spectrum 
Overview, signals which are always present in the machine are clearly distinguished from 
signals caused by developing damages. The Coloured Spectrum Overview provides a very 
good overall picture of machine condition development. 
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 [5] 
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A Case Study: Condition Monitoring of a Pump Bearing 

The drive-end bearing of a pump used in a chemical 
production process was investigated. Several measuring 
techniques were assigned to the measuring point, among 
others, the shock pulse measurement. 

The waterfall diagram shows clearly, that the measure of 
amplitude enhancement was significant at certain 
frequencies.   
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Further investigations showed that the high lines matched the symptom lines belonging to 
the outer ring fault (BPFO), that is, a failure of the outer ring was detected.  

The following three diagrams show the spectrum measured before outer ring fault 
appeared (good condition), when the problem has developed (presence of failure), and 
after installing a new bearing (good condition again). 
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The figure shows the severe fault 
on the surface of the outer ring. 
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Example 

The bearing fault coefficients for the bearing of type ISO6302 are the following 

 
The rotational speed of the shaft during the measurement is 1140 𝑟𝑝𝑚. The sketch of the 
spectrum provided by SPM Ruby is 

 
Which element of the bearing is damaged: outer ring, inner ring, ball, cage, or none of 
them? 

  

          (  )

       d 

100 200

1 ×
2 ×

3 ×
4 ×
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Solution 

The bearing fault frequencies belonging to the rotational speed of 1140 𝑟𝑝𝑚  19 𝑟𝑝𝑠 are 

fault type coefficient rotational speed (𝑟𝑝𝑠) fault frequency (𝐻𝑧) 

outer ring 2.558 19 48.60 

inner ring 4.442 19 84.40 

ball 1.724 19 32.76 

cage 0.365 19 6.94 

The spectrum contains a frequency near to 32.765 𝐻𝑧 (ball spin frequency) and its 
harmonics. It suggests that there is a fault on a ball.  
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5th week – Questions 
 

Question 1 

Give the orthonormal exponential system which is used for the decomposition of 𝑇-periodic 
functions 

Answer 

{EXP𝑘( )  
1

√𝑇
∙ 𝑒𝑖∙𝑘∙

2𝜋
𝑇
∙𝑡}

𝑘∈ℤ
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Question 2 

Give the Fourier series and the Fourier coefficients of function 𝑥 ∈ 𝐿2([0, 𝑇]) with respect to 
the orthonormal exponential system. 

Answer 

ℱ𝒮(𝑥)  ∑ (�̂�𝑘 ∙ EXP𝑘)

∞

𝑘=−∞

 ∑ (�̂�𝑘 ∙ (
1

√𝑇
∙ 𝑒−𝑖∙𝑘∙

2𝜋
𝑇
∙𝑡))

∞

𝑘=−∞

 

�̂�𝑘  〈𝑥, EXP𝑘〉  ∫𝑥( ) ∙ (
1

√𝑇
∙ 𝑒−𝑖∙𝑘∙

2𝜋
𝑇
∙𝑡)

𝑇

 

𝑑 ,     𝑘 ∈ ℤ 
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Question 3 

Give the connection between trigonometric and exponential Fourier coefficients. 

Answer 

�̂�𝑘  
1

√2
∙ (�̂�𝑘 − �̂�𝑘 ∙ 𝑖),     �̂�−𝑘  

1

√2
∙ (�̂�𝑘  �̂�𝑘 ∙ 𝑖),   𝑎𝑛𝑑   |�̂�𝑘|  

1

√2
∙ √�̂�𝑘

2  �̂�𝑘
2. 
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5th week – Exercises 
Exercise 

Calculate the Fourier coefficient �̂�3 of the 8-periodic 
function 𝑥 defined as 

𝑥( )  {
6,   0 <  < 4
0,   4 <  < 8
3,   𝑥 ∈ {0,4}

 

with respect to the orthonormal exponential system. 
 

Solution 

�̂�3  〈𝑥( ),
1

√8
∙ 𝑒−𝑖∙3∙

2𝜋
8
∙𝑡〉  ∫6 ∙

1

√8
∙ 𝑒−𝑖∙

3𝜋
4
∙𝑡

4

 

𝑑  
6

√8
∙
−4

3𝜋 ∙ 𝑖
∙ [𝑒−𝑖∙

3𝜋
4
∙𝑡]

 

4

  

 
−√8

𝜋 ∙ 𝑖
∙ (𝑒−𝑖∙3𝜋 − 1)  

−√8

𝜋 ∙ 𝑖
∙ (   (−3𝜋)  𝑖 ∙    (−3𝜋) − 1)  

2 ∙ √8

𝜋 ∙ 𝑖
 

  

84

6
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Exercise 

Calculate the Fourier coefficient �̂�4 of the 2-periodic function 𝑥 
defined as 

𝑥( )   ,     0 ≤  < 2 

with respect to the orthonormal exponential system. 

 

Solution 

�̂�4  〈𝑥( ),
1

√2
∙ 𝑒−𝑖∙4∙

2𝜋
2
∙𝑡〉  ∫  ∙

1

√2
∙ 𝑒−𝑖∙4∙𝜋∙𝑡

2

 

𝑑  
1

√2
∙
−1

4𝜋 ∙ 𝑖
∙ [(  

1

4𝜋𝑖
) ∙ 𝑒−𝑖∙4𝜋∙𝑡]

 

4

  

 
1

√2
∙
−1

4𝜋 ∙ 𝑖
∙ ((4  

1

4𝜋𝑖
) ∙ 𝑒−𝑖∙16𝜋 −

1

4𝜋𝑖
) 

Details of the calculation 

∫ ∙ 𝑒−𝑖∙4𝜋∙𝑡 𝑑  
−1

4𝜋 ∙ 𝑖
∙  ∙ 𝑒−𝑖∙4𝜋∙𝑡  

1

4𝜋 ∙ 𝑖
∙ ∫ 𝑒−𝑖∙4𝜋∙𝑡 𝑑  

−1

4𝜋 ∙ 𝑖
∙  ∙ 𝑒−𝑖∙4𝜋∙𝑡  

1

16𝜋2
∙ 𝑒−𝑖∙4𝜋∙𝑡   

[
𝑔( )   

𝑓′( )  𝑒−𝑖∙4𝜋∙𝑡
   ⟹   

𝑔′( )  1

𝑓( )  
1

−4𝜋 ∙ 𝑖
∙ 𝑒−𝑖∙4𝜋∙𝑡

]                                     
−1

4𝜋 ∙ 𝑖
∙ (  

1

4𝜋𝑖
) ∙ 𝑒−𝑖∙4𝜋∙𝑡 

2

2
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Exercise 

Calculate the Fourier coefficients of the 2𝜋-periodic function 𝑥 
defined as 

𝑥( )   2 ,     − 𝜋 ≤  < 𝜋 

with respect to the orthonormal exponential system. 

Use the Parseval equality to give the sum ∑
1

𝑘4
∞
𝑘=1 . 

 

Solution 

�̂�  ∫  2 ∙
1

√2𝜋

𝜋

−𝜋

𝑑  
1

√2𝜋
∙
2

3
∙ 𝜋3 

If 𝑘 ≠ 0 

�̂�𝑘  ∫  2 ∙ (
1

√2𝜋
∙ 𝑒−𝑖∙𝑘∙𝑡)

𝜋

−𝜋

𝑑  
1

√2𝜋
∙ [(

1

𝑘
∙ 𝑖 ∙  2  

2

𝑘2
∙  −

2

𝑘3
∙ 𝑖) ∙ 𝑒−𝑖∙𝑘∙𝑡]

−𝜋

𝜋

  

 
1

√2𝜋
∙ ((

1

𝑘
∙ 𝑖 ∙ 𝜋2  

2

𝑘2
∙ 𝜋 −

2

𝑘3
∙ 𝑖) ∙ 𝑒−𝑖∙𝑘∙𝜋 − (

1

𝑘
∙ 𝑖 ∙ 𝜋2 −

2

𝑘2
∙ 𝜋 −

2

𝑘3
∙ 𝑖) ∙ 𝑒−𝑖∙𝑘∙𝜋)   

−𝜋 𝜋

𝜋2
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4𝜋

√2𝜋
∙ (−1)𝑘 ∙

1

𝑘2
 

Details of the calculation (integration by parts): 

∫ 2 ∙ 𝑒−𝑖∙𝑘∙𝑡 𝑑  
1

−𝑘 ∙ 𝑖
∙  2 ∙ 𝑒−𝑖∙𝑘∙𝑡  

2

𝑘 ∙ 𝑖
∙ ∫  ∙ 𝑒−𝑖∙𝑘∙𝑡 𝑑   

[
𝑔( )   2

𝑓′( )  𝑒−𝑖∙𝑘∙𝑡
   ⟹   

𝑔′( )  2 

𝑓( )  
1

−𝑘 ∙ 𝑖
∙ 𝑒−𝑖∙𝑘∙𝑡

]   [
𝑔( )   

𝑓′( )  𝑒−𝑖∙𝑘∙𝑡
   ⟹   

𝑔′( )  1

𝑓( )  
1

−𝑘 ∙ 𝑖
∙ 𝑒−𝑖∙𝑘∙𝑡

] 

 
1

−𝑘 ∙ 𝑖
∙  2 ∙ 𝑒−𝑖∙𝑘∙𝑡  

2

𝑘 ∙ 𝑖
∙ (

1

−𝑘 ∙ 𝑖
∙  ∙ 𝑒−𝑖∙𝑘∙𝑡  

1

𝑘 ∙ 𝑖
∙ ∫ 𝑒−𝑖∙𝑘∙𝑡 𝑑 )   

 
1

−𝑘 ∙ 𝑖
∙  2 ∙ 𝑒−𝑖∙𝑘∙𝑡  

2

𝑘2
∙  ∙ 𝑒−𝑖∙𝑘∙𝑡  

2

𝑘3 ∙ 𝑖
∙ 𝑒−𝑖∙𝑘∙𝑡  (

1

𝑘
∙ 𝑖 ∙  2  

2

𝑘2
∙  −

2

𝑘3
∙ 𝑖) ∙ 𝑒−𝑖∙𝑘∙𝑡 

We used that 

𝑒−𝑖∙𝑘∙𝜋     (−𝑘 ∙ 𝜋)  𝑖 ∙    (−𝑘 ∙ 𝜋)     (𝑘 ∙ 𝜋)  (−1)𝑘 

𝑒𝑖∙𝑘∙𝜋     (𝑘 ∙ 𝜋)  𝑖 ∙    (𝑘 ∙ 𝜋)     (𝑘 ∙ 𝜋)  (−1)𝑘 

According to the Parseval’s equality 

‖𝑥‖2  ∫  4
𝜋

−𝜋

𝑑  ∑ �̂�𝑘
2

∞

𝑘=−∞

 �̂� 
2  2 ∙∑ �̂�𝑘

2

∞

𝑘=1

 
2

9
∙ 𝜋5  2 ∙ 8𝜋 ∙ ∑

1

𝑘4

∞

𝑘=1
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Since ∫  4
𝜋

−𝜋
𝑑  

1

5
∙ [ 5]−𝜋

𝜋  
2

5
∙ 𝜋5 we have 

2

5
∙ 𝜋5  

2

9
∙ 𝜋5  16𝜋 ∙∑

1

𝑘4

∞

𝑘=1

          ⇒           ∑
1

𝑘4

∞

𝑘=1

 
𝜋4

90
 

  



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 193 

Exercise 

Calculate the Fourier coefficient �̂�3 of the 1-periodic function 𝑥 
defined as 

𝑥( )  𝑒𝑡,     0 ≤  < 1 

with respect to the exponential system. 

 

Solution 

�̂�3  ∫𝑒𝑡 ∙ 𝑒−𝑖∙3∙2𝜋∙𝑡
1

 

𝑑  ∫𝑒(1−6𝜋𝑖)∙𝑡
1

 

𝑑  
1

1 − 6𝜋𝑖
∙ [𝑒(1−6𝜋𝑖)∙𝑡]

 

1
 

1

1 − 6𝜋𝑖
∙ (𝑒1−6𝜋𝑖 − 1)

  

 
1

1 − 6𝜋𝑖
∙ (𝑒 ∙ 𝑒−6𝜋𝑖 − 1)  

𝑒

1 − 6𝜋𝑖
∙ (   (−6𝜋)  𝑖 ∙    (−6𝜋)) −

1

1 − 6𝜋𝑖
 

𝑒 − 1

1 − 6𝜋𝑖
 

  

1

1

𝑒



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 194 

Exercise 

The bearing fault coefficients for the bearing of type ISO30210 are the following 

 
The rotational speed of the shaft during the measurement is 780 𝑟𝑝𝑚. The sketch of the 
spectrum provided by SPM Ruby is 

 
Which element the symptom lines in the figure belong to (outer ring, inner ring, ball, cage, 
or none of them)? 

  

          (  )

       d 

300 600

1 ×

2 ×

3 ×

4 ×
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Solution 

The bearing fault frequencies belonging to the rotational speed of 780 𝑟𝑝𝑚  13 𝑟𝑝𝑠 are 

fault type coefficient rotational speed (𝑟𝑝𝑠) fault frequency (𝐻𝑧) 

outer ring 8.571 13 111.42 

inner ring 11.429 13 148.58 

ball 3.301 13 42.92 

cage 0.429 13 5.577 

The spectrum contains a frequency near to 148.58 𝐻𝑧 (inner ring frequency) and its 
harmonics. It suggests that there is a fault on the inner ring.  
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Exercise 

It is known that the specific symptom of a coupling problem is a line in the frequency 
spectrum at 2nd order. Determine the specific frequency belonging to the coupling problem 
if the rotational speed of the shaft is 1800 𝑟𝑝𝑚. 

Solution 

The rotational speed is 1800 𝑟𝑝𝑚  50 𝑟𝑝𝑠. 

The line belonging to the coupling problem is at 2 × 50  100 𝐻𝑧 in the frequency 
spectrum. 
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Exercise 

Sometimes a possible way to determine the rotational speed of the shaft is to find the 
frequency of 1st order (frequency belonging to unbalance). Since this frequency generally 
belongs to the highest energy harmonic component of the signal, the shaft speed can be 
identified finding the highest line in the frequency spectrum. Give the probable value of the 
rotational speed of the shaft using the following spectrum.  

 

Solution 

The highest line in the frequency spectrum is near to 4.5 𝐻𝑧. It suggests that the rotational 
speed of the shaft is 4.5 𝑟𝑝𝑠  4.5 × 60  225 𝑟𝑝𝑚.  

  

          (  )

       d 

10 20
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6th week 
 

6 Continuous Fourier Transform, Discrete Fourier Transform, 
Fast Fourier Transform 
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Integral Transforms, Convolution 

Let 𝐾: ℂ × ℝ → ℂ be a given integrable function. Function 

𝐹(𝑠)  ∫𝑓( ) ∙ 𝐾(𝑠,  )

𝑏

𝑎

𝑑 ,   𝑠 ∈ ℂ 

is called the integral transform of function 𝑓: [𝑎, 𝑏] → ℂ if the integral is convergent. 

The Fourier transform and the Laplace transform are two well-known integral transforms, 
which are frequently used in different fields of engineering and sciences. Some special 
transformations appear in special applications, e.g. the wavelet transform is important tool, 
for example in technical diagnostics. 

Some transformations (e.g. Fourier and wavelet) have continuous and discrete forms. 
Discrete transformations are used in discrete signal processing where only a sampled signal 
is available rather than the formula of the function (signal). 

A basic concept in signal analysis is the convolution. It has different forms depending on the 
field of the application. Convolution of integrable functions 𝑥:ℝ → ℝ and ℎ:ℝ → ℝ can be 
defined as 

(𝑥 ∗ ℎ)( )  ∫ 𝑥(𝜏) ∙ ℎ( − 𝜏)

∞

−∞

𝑑𝜏,      ∈ ℝ. 
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The convolution formula can be considered as a weighted average of the function 𝑥(𝜏) at 
the moment   where the weighting is given by ℎ( – 𝜏). As   changes, the weighting function 
emphasizes different parts of the input function. 

For functions 𝑥 and ℎ supported only on the non-negative real line a modified formula is 
used. Convolution of integrable functions 𝑥: [0,∞[→ ℝ and ℎ: [0,∞[→ ℝ is 

(𝑥 ∗ ℎ)( )  ∫𝑥(𝜏) ∙ ℎ( − 𝜏)

𝑡

 

𝑑𝜏,      ∈ [0,∞[. 

If ℎ( ),  ∈ ℝ is the impulse response (response to the delta function input) of a linear time-
invariant system, then the response of the system for an input 𝑥( ),  ∈ ℝ is 

𝑦( )  (𝑥 ∗ ℎ)( ),  ∈ ℝ. 
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Example 

Determine the convolution Π ∗ Π where Π( )  {
1    | | ≤ 1
0    | | > 1

 is the rectangular pulse 

function on [−1,1]. 

Solution 

Π ∗ Π( )  ∫ Π(𝜏) ∙ Π( − 𝜏)

∞

−∞

𝑑𝜏 

The integral is different from zero when both Π(𝜏) and Π( − 𝜏) are different from zero, 
that is, when −1 ≤ 𝜏 ≤ 1 and −1 ≤  − 𝜏 ≤ 1. The latter system of inequalities can be 
written as  − 1 ≤ 𝜏 ≤   1. 

The two requirements imply that the limits of the integration are    {−1,  − 1} and 
   {1,   1} assuming that    {−1,  − 1} ≤    {1,   1}, that is, when −2 ≤  ≤ 2. 

 

Π ∗ Π( )  ∫ Π(𝜏) ∙ Π( − 𝜏)

min{1,𝑡+1}

max{−1,𝑡−1}

𝑑𝜏 

 

 
0 2−2

   −1,  − 1

   1,   1

−1

  1

 − 1

1
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If −2 ≤  ≤ 0, then 

Π ∗ Π( )  ∫ 1

𝑡+1

𝜏=−1

𝑑𝜏  [𝜏]𝜏=−1
𝑡+1    2 

If 0 ≤  ≤ 2, then 

Π ∗ Π( )  ∫ 1

1

𝜏=𝑡−1

𝑑𝜏  [𝜏]𝜏=𝑡−1
1  −  2 

The following figure, as an example, shows the calculation of Π(1.5): 

 

−1

Π(𝜏)

𝜏
−2 2

1

−1 1

Π ∗ Π( )

𝜏
−2 2

2

12

Π(𝜏)
1

−1
𝜏

−2

1.5 − 𝜏

  1.5

1
𝜏

0.5

0.5

1.5

Π ∗ Π(1.5)
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The convolution is the triangle function      {
  2   −2 ≤  ≤ 0
−  2   0 ≤  ≤ 2

0   | | > 2
. 
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Continuous Fourier Transform 

Function 

ℱ𝒯(𝑥)( )  �̂�( )  ∫ 𝑥( ) ∙ 𝑒−𝑖∙𝜔∙𝑡
∞

−∞

𝑑 ,    ∈ ℝ 

is the Fourier transform of function 𝑥:ℝ → ℝ if the integral is convergent. 

The Fourier integral of 𝑥:ℝ → ℝ  is 

ℱℐ(𝑥)( )  ℱ𝒯−1(�̂�)( )  
1

2𝜋
∙ ∫ �̂�( ) ∙ 𝑒𝑖∙𝜔∙𝑡

∞

−∞

𝑑 ,    ∈ ℝ. 

Functions 

 → |�̂�( )|,      → |�̂�( )|2,       d    → ∠ �̂�( ) 

are called amplitude spectrum, energy spectrum and phase spectrum, respectively, in 
engineering literature. 

Remark 

Different formulas can be found in different textbooks for the Fourier transform and for the 
Fourier integral. Here we use the angular frequency   as a variable and we write coefficient 
1

2𝜋
 in the Fourier integral rather than in the Fourier transform to harmonize it with the 
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formula of the Laplace transform. Instead of   the frequency 𝑓 can also be used as a variable 
and the coefficients in the two formulas can be written in different way. 

Remark 

The Fourier coefficients of periodic functions have discrete nature, values of �̂�𝑘 are linked 

to the ‘discrete angular frequencies’ 𝑘 ∙    𝑘 ∙
2𝜋

𝑇
, this is why this spectrum is called 

‘discrete’. Furthermore, the Fourier series gives the function in the form of a (countable) 
infinite summation. 

The spectrum of non-periodic functions provided by the Fourier transform is called 
continuous since the domain of the Fourier transform is the real line, that is, any real 
angular frequencies can appear in the spectrum. Instead of summation there is an 
integration in the Fourier integral. 

Using the Euler’s formula 𝑒𝑖∙𝑡       𝑖 ∙     ,  ∈ ℝ we can write the Fourier transform 
of 𝑥:ℝ → ℝ as 

�̂�( )  ∫ 𝑥( ) ∙ 𝑒−𝑖∙𝜔∙𝑡
∞

−∞

𝑑   

 ∫ 𝑥( ) ∙    (− ∙  )

∞

𝑡=−∞

𝑑  𝑖 ∙ ∫ 𝑥( ) ∙    (− ∙  )

∞

𝑡=−∞

𝑑   
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 ∫ 𝑥( ) ∙    ( ∙  )

∞

𝑡=−∞

𝑑 − 𝑖 ∙ ∫ 𝑥( ) ∙    ( ∙  )

∞

𝑡=−∞

𝑑  �̂�( ) − 𝑖 ∙ �̂�( ),    ∈ ℝ. 

When 𝑥 is even, then �̂�𝑥  0 and we have 

�̂�( )  ∫ 𝑥( ) ∙    ( ∙  )

∞

𝑡=−∞

𝑑  2 ∙ ∫ 𝑥( ) ∙    ( ∙  )

∞

𝑡= 

𝑑 ,    ∈ ℝ. 

When 𝑥 is odd, then �̂�𝑥  0 and we have 

�̂�( )  −𝑖 ∙ ∫ 𝑥( ) ∙    ( ∙  )

∞

𝑡=−∞

𝑑  −𝑖 ∙ 2 ∙ ∫ 𝑥( ) ∙    ( ∙  )

∞

𝑡= 

𝑑 ,    ∈ ℝ. 

Integrals 

ℱ𝒯cos(𝑥)( )  2 ∙ ∫ 𝑥( ) ∙    ( ∙  )

∞

𝑡= 

𝑑 ,      ∈ ℝ, ≥ 0 

and 

ℱ𝒯sin(𝑥)( )  2 ∙ ∫ 𝑥( ) ∙    ( ∙  )

∞

𝑡= 

𝑑 ,      ∈ ℝ, ≥ 0 
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are called the cosine Fourier transform and the sine Fourier transform of function 
𝑥: [0,∞[→ ℝ. 

The Fourier cosine integral of 𝑥 is 

ℱℐcos(𝑥)( )  
1

𝜋
∙ ∫ ℱ𝒯cos(𝑥)( ) ∙    ( ∙  )

∞

𝜔= 

𝑑 ,      ∈ ℝ,  ≥ 0, 

while the Fourier sine integral of 𝑥 is 

ℱℐ𝑠𝑖𝑛(𝑥)( )  
1

𝜋
∙ ∫ ℱ𝒯sin(𝑥)( ) ∙    ( ∙  )

∞

𝜔= 

𝑑 ,      ∈ ℝ,  ≥ 0. 

Each real function 𝑥:ℝ → ℝ (having Fourier transform) can be analysed with its cosine and 
sine Fourier transform since 𝑥 can be written as 

𝑥( )  
𝑥( )  𝑥(− )

2
 
𝑥( ) − 𝑥(− )

2
 𝑔( )  ℎ( ),      ∈ ℝ. 

where 𝑔 is even and ℎ is odd. Thus 

ℱ𝒯(𝑥)  ℱ𝒯(𝑔)  ℱ𝒯(ℎ)  ℱ𝒯cos(𝑔) − 𝑖 ∙ ℱ𝒯sin(ℎ) 

If function 𝑥 is piecewise continuous then ℱℐ(𝑥) is equal to 𝑥 wherever 𝑥 is continuous, and 
ℱℐ(𝑥) is the average the left- and right-hand limits wherever 𝑥 is discontinuous. 
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Remark 

Since a piecewise continuous function (signal) can be reconstructed from its Fourier 
transform (through its Fourier integral) we can say that the Fourier transform contains all 
information about the function, and can be considered as an alternative representation. 

For instance, a vibration process can be described in the ‘time domain’ (e.g. vibration 
velocity vs. time function) and also in ‘frequency domain’ (e.g. vibration frequency 
spectrum). 

Parseval’s equality (energy of a signal): 

∫ 𝑥2( )

∞

𝑡=−∞

𝑑  
1

2𝜋
∙ ∫ |�̂�( )|2

∞

𝜔=−∞

𝑑 . 
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The following table shows some functions with their Fourier transforms. 

We can find some ‘dual’ properties of the Fourier transform which show how the Fourier 
transform changes (in the frequency domain) when the function is changed in the time 
domain, and vice versa. 

For 𝛼, 𝛽, 𝑇,   ∈ ℝ 

 time domain frequency domain 

  → 𝒙(𝒕)  ℱ𝒯−1(�̂�)( )  → �̂�(𝝎)  ℱ𝒯(𝑥)( ) 

linearity  → 𝛼 · 𝑥( )     · 𝑦( )  → 𝛼 · �̂�( )    · �̂�( ) 

shift in the time domain  → 𝑥( − 𝑇)  → �̂�( ) ∙ 𝑒−𝑖∙𝑇∙𝜔 

shift in the frequency 
domain (modulation) 

 → 𝑥( ) ∙ 𝑒𝑖∙𝜔0∙𝑡  → �̂�( −   ) 

scaling  → 𝑥(𝛼 ∙  )  →
1

|𝛼|
∙ �̂� (

 

𝛼
) 

convolution  → (𝑥 ∗ 𝑦)( )  → �̂�( ) ∙ �̂�( ) 
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In the theory of integral transforms unit impulse function (or Dirac delta function) has 
important role. Dirac delta is not a common function, its value is different from zero only at 
0, and its integral on ℝ is 1: 

𝛿( )  {
∞      0
0     ≠ 0

               ∫ 𝛿( )

∞

−∞

𝑑  1 

 
 

  

𝛿( )

 

1
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Example 

Determine the complex Fourier transform and the Fourier integral of the rectangular pulse 
function 

𝑥( )  Π( )  {
1   | | ≤ 1
0   | | > 1

 

Solution 

�̂�( )  ∫ 𝑥( ) ∙ 𝑒−𝑖∙𝜔∙𝑡
∞

𝑡=−∞

𝑑  ∫ 𝑒−𝑖∙𝜔∙𝑡
1

𝑡=−1

𝑑  [
𝑒−𝑖∙𝜔∙𝑡

−𝑖 ∙  
]
𝑡=−1

1

  

 
1

−𝑖 ∙  
∙ (𝑒−𝑖∙𝜔 − 𝑒𝑖∙𝜔)  

2

 
∙
𝑒𝑖∙𝜔 − 𝑒−𝑖∙𝜔

2𝑖
 2 ∙

    

 
 2 ∙       

 → 𝑥( )  Π( )  → �̂�( )  2 ∙
    

 
 

 
 

 

  

x

3 2 1 0 1 2 3

0,2

0,6

1
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The Fourier integral of 𝑥 is 

ℱℐ(𝑥)( )  
1

2𝜋
∙ ∫ �̂�( ) ∙ 𝑒𝑖∙𝜔∙𝑡

∞

𝜔=−∞

𝑑  
1

𝜋
∙ ∫

   ( )

 
∙ 𝑒𝑖∙𝜔∙𝑡

∞

𝜔=−∞

𝑑  
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Example 

Determine the sine and cosine Fourier transform of the of the rectangular pulse function 

𝑥( )  Π( )  {
1   | | ≤ 1
0   | | > 1

 

Solution 

Since 𝑥 is even ℱ𝒯sin(𝑥)  0. 

ℱ𝒯cos(𝑥)( )  2 ∙ ∫ 𝑥( ) ∙    ( ∙  )

∞

𝑡= 

𝑑  2 ∙ ∫    ( ∙  )

1

𝑡= 

𝑑  2 ∙
    

 
 

The Fourier cosine integral of 𝑥 is 

ℱℐ(𝑥)( )  
2

𝜋
∙ ∫

    

 
∙    ( ∙  )

∞

𝜔= 

𝑑  
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Example 

Determine the Fourier transform of the unit impulse (Dirac delta) function 

Solution 

ℱ𝒯(𝛿)( )  ∫ 𝛿( ) ∙ 𝑒−𝑖∙𝜔∙𝑡
∞

−∞

𝑑  𝑒−𝑖∙ ∙𝑡 ∙ ∫ 𝛿( ) ∙

∞

−∞

𝑑  1 
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Example 

Determine the Fourier transform of the shifted rectangular pulse function 

𝑥( )  {
1    1 − 𝑇 ≤  ≤ 1  𝑇
0    < 1 − 𝑇     > 1  𝑇

 

Solution 

�̂�( )  ∫ 𝑒−𝑖∙𝜔∙𝑡
1+𝑇

𝑡=1−𝑇

𝑑  
−1

𝑖 ∙  
∙ [𝑒−𝑖∙𝜔∙𝑡]

𝑡=1−𝑇

1+𝑇
 

−1

𝑖 ∙  
∙ (𝑒−𝑖∙𝜔∙(1+𝑇) − 𝑒𝑖∙𝜔∙(1−𝑇)   

 
−1

𝑖 ∙  
∙ 𝑒−𝑖∙𝜔 ∙ (𝑒−𝑖∙𝜔∙𝑇 − 𝑒𝑖∙𝜔∙𝑇)  2 ∙ 𝑒−𝑖∙𝜔 ∙

1

 
∙
𝑒𝑖∙𝜔∙𝑇 − 𝑒−𝑖∙𝜔∙𝑇

2𝑖
 2 ∙

   ( ∙ 𝑇)

 
∙ 𝑒−𝑖∙𝜔 

 

  

𝑥( )

2𝑇

−𝜋/𝑇  𝜋/𝑇

−𝜋

𝑇

𝜋

𝑇

∠ 𝑥( )

𝜋

−𝜋
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Example 

Calculate    
𝑎→ + 

�̂�( ) when 𝑥( )  {
0     < 0

𝑒−𝑎∙𝑡     ≥ 0
,    𝑎 > 0 

Solution 

   
𝑎→ + 

�̂�( )     
𝑎→ + 

𝑎

𝑎2   2
    

𝑎→ + 

−𝑖 ∙  

𝑎2   2
 𝜋 ∙ 𝛿( )  

1

𝑖 ∙  
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The unit step function 𝑥( )  {
0     < 0
1     ≥ 0

 has not Fourier transform since the integral 

∫ 𝑒−𝑖∙𝜔∙𝑡
∞

𝑡= 

𝑑  ∫    ( ∙  )

∞

𝑡= 

𝑑 − 𝑖 ∙ ∫    ( ∙  )

∞

𝑡= 

𝑑  

is not convergent. 

The unit step function can be considered as the limit of 𝑥( )  {
0     < 0

𝑒−𝑎∙𝑡     ≥ 0
, 𝑎 > 0 as 

𝑎 → 0  0, thus we can define, symbolically, the ‘Fourier transform’ of unit step function 

as 𝜋 ∙ 𝛿( )  
1

𝑖∙𝜔
. 

This definition yields Fourier transform of further important functions. 
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Example 

Determine symbolically the Fourier transform of the negative unit step function 

𝑥( )  {
1     < 0
0     ≥ 0

 using the Fourier transform of the unit step function. 

Solution 

∫ 𝑒−𝑖∙𝜔∙𝑡
 

𝑡=−∞

𝑑  ∫ 𝑒−𝑖∙(−𝜔)∙𝑡
∞

𝑡= 

𝑑  𝜋 ∙ 𝛿( ) −
1

𝑖 ∙  
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Example 

Determine symbolically the Fourier transform of periodic function (with basic frequency 
  ) 

𝑥( )  ∑ 𝑎𝑘 ∙ 𝑒
𝑖∙𝑘∙𝜔0∙𝑡

∞

𝑘=−∞

 

using that ∫ 𝑒−𝑖∙𝜔∙𝑡
∞

𝑡=−∞
𝑑  2𝜋 ∙ 𝛿( ). 

Solution 

𝑥( )  ∑ 𝑎𝑘 ∙ ∫ 𝑒𝑖∙𝑘∙𝜔0∙𝑡 ∙ 𝑒−𝑖∙𝜔∙𝑡
∞

𝑡=−∞

𝑑 

∞

𝑘=−∞

 ∑ 𝑎𝑘 ∙ ∫ 𝑒𝑖∙(𝑘∙𝜔0−𝜔)∙𝑡

∞

𝑡=−∞

∞

𝑘=−∞

𝑑   

 2𝜋 ∙ ∑ 𝑎𝑘 ∙ 𝛿( − 𝑘 ∙   )

∞

𝑘=−∞

 

 

𝑥( )

 

2𝜋  𝑎 

−    2  3  −3  −2  

2𝜋  𝑎1

2𝜋  𝑎2
2𝜋  𝑎3

2𝜋  𝑎−1

2𝜋  𝑎−2
2𝜋  𝑎−3



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 220 

Example 

Use time shift property of Fourier transform ℱ𝒯(𝑥( − 𝑇))  𝑒−𝑖∙𝜔∙𝑇 ∙ ℱ𝒯(𝑥( )) to 

determine the Fourier transform of function 𝑥( )     (  ∙    ). 

Solution 

𝑥( )     (  ∙    )     (  ∙ (  
𝜑

𝜔0
)). 

Using the transform of 𝑥( )     (  ∙  ) and the time shift property we have 

�̂�( )  𝑒
𝑖∙𝜔∙

𝜑
𝜔0 ∙ 𝜋 ∙ (𝛿( −   )  𝛿(    )) 
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Example 

Determine the Fourier transform of triangle function 

𝑥( )     ( )  {

  2 𝑖𝑓 −2 ≤  ≤ 0
−  2 𝑖𝑓 0 ≤  ≤ 2

0 𝑖𝑓 | | > 2
 

using the convolution theorem ℱ𝒯(𝑥 ∗ ℎ)  ℱ𝒯(𝑥) ∙ ℱ𝒯(ℎ). 

Solution 

We have that 

𝑥( )     ( )  Π ∗ Π( ) 

where Π( )  {
1    | | ≤ 1
0    | | > 1

 , is the rectangular impulse function. 

Using the convolution theorem we get 

�̂�( )  ℱ𝒯(Π)( ) ∙ ℱ𝒯(Π)( )  4 ∙
   2 

 2
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Discrete Convolution 

Convolution of two discrete-time signals {𝑥[𝑛]}𝑛∈ℕ and {ℎ[𝑛]}𝑛∈ℕ is 

(𝑥 ∗ ℎ)[𝑛]  ∑ 𝑥[𝑘] ∙ ℎ[𝑛 − 𝑘]

∞

𝑘=−∞

,     𝑛 ∈ ℕ. 

Remark 

If ℎ[𝑛] is the impulse response (response to the delta function input) of a linear time-
invariant system, then the response of the system for a discrete input {𝑥[𝑛]}𝑛∈ℕ is 

𝑦[𝑛]  (𝑥 ∗ ℎ)[𝑛],     𝑛 ∈ ℕ. 
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Example 

Determine the convolution of functions 𝑥:ℕ → ℝ and ℎ:ℕ → ℝ defined as 

𝑛 0 1 2 3  𝑛 0 1 2 

𝑥[𝑛] 4 1 2 5  ℎ[𝑛] 1 2 −1 

𝑥[𝑛]  0, ℎ[𝑛]  0 otherwise. 

Solution 

(𝑥 ∗ ℎ)[0]  ∑ 𝑥[𝑘] ∙ ℎ[−𝑘]

∞

𝑘=−∞

 𝑥[0] ∙ ℎ[0]  4 ∙ 1  4 

(𝑥 ∗ ℎ)[1]  ∑ 𝑥[𝑘] ∙ ℎ[1 − 𝑘]

∞

𝑘=−∞

 𝑥[0] ∙ ℎ[1]  𝑥[1] ∙ ℎ[0]  4 ∙ 2  1 ∙ 1  9 

(𝑥 ∗ ℎ)[2]  ∑ 𝑥[𝑘] ∙ ℎ[2 − 𝑘]

∞

𝑘=−∞

 𝑥[0] ∙ ℎ[2]  𝑥[1] ∙ ℎ[1]  𝑥[2] ∙ ℎ[0]   

 4 ∙ (−1)  1 ∙ 2  2 ∙ 1  0 

(𝑥 ∗ ℎ)[3]  ∑ 𝑥[𝑘] ∙ ℎ[3 − 𝑘]

∞

𝑘=−∞

 𝑥[1] ∙ ℎ[2]  𝑥[2] ∙ ℎ[1]  𝑥[3] ∙ ℎ[0]   

 1 ∙ (−1)  2 ∙ 2  5 ∙ 1  8 
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(𝑥 ∗ ℎ)[4]  ∑ 𝑥[𝑘] ∙ ℎ[4 − 𝑘]

∞

𝑘=−∞

 𝑥[2] ∙ ℎ[2]  𝑥[3] ∙ ℎ[1]  2 ∙ (−1)  5 ∙ 2  8 

(𝑥 ∗ ℎ)[5]  ∑ 𝑥[𝑘] ∙ ℎ[5 − 𝑘]

∞

𝑘=−∞

 𝑥[3] ∙ ℎ[2]  5 ∙ (−1)  −5 

(𝑥 ∗ ℎ)[𝑛]  0 otherwise. 

𝑛 … −1 0 1 2 3 4 5 6 … 

(𝑥 ∗ ℎ)[𝑛] … 0 4 9 0 8 8 −5 0 … 
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Discrete Fourier Transform 

Since digital measuring systems are used in practice and the data are stored and processed 
with digital computers, sampled signals are available for signal processing. Consequently, 
the continuous transforms requiring the formula of the signal are unusable, we need 
algorithms (discrete transforms) that provide (or approximate) the spectrum from 
sampled signals. (Since the sampled signals contain limited measure of information about 
the signal, the exact spectrum cannot be determined from the sample.) 

Let 𝑇 > 0 be a fixed real number and 𝑁 be a fixed positive integer and suppose that values 

𝑥[𝑛]  𝑥[𝑛 × ∆𝑇],     𝑛  0,1, … , 𝑁 − 1 

of signal 𝑥 are provided by a sampling process. 

The discrete Fourier transform of sampled signal 𝑥[0], . . . , 𝑥[𝑁 − 1] is 

𝑋[𝑘]  ∑ 𝑥[𝑛] ∙ 𝑒−𝑖∙𝑘∙𝑛∙
2𝜋
𝑁

𝑁−1

𝑛= 

,     𝑘  0,1, … , 𝑁 − 1 
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Mathematically, both the input and the output of the discrete Fourier transform consist of 
𝑁 pure numbers. In practice, when the circumstances of sampling are known, these values 
have physical meaning, and values 𝑋[0], . . . , 𝑋[𝑁 − 1] provide a ‘discrete spectrum’. 

Considering a sampling process, 𝑇 is the sampling time, 𝑁 is the sample size (number of 
elements in the sample), ∆𝑇 is time between two measurements.  

Further quantities are the sampling frequency 𝑓𝑠  𝑁/𝑇  1/∆𝑇, the frequency resolution 
∆𝑓  1/𝑇  𝑓𝑠/𝑁. The potential frequency values in the discrete spectrum are 𝑘 × ∆𝑓, 𝑘  
0,1, … , 𝑁 − 1. 

  

𝑥[1]   𝑥 1  ∆ 

𝑥[0]   𝑥 0  ∆ 

𝑥[𝑁 − 1]   𝑥 𝑁 − 1  ∆ 

𝑥[2]   𝑥 2  ∆ 

0 ∆ 2  ∆ … 𝑁 − 1  ∆ 

 

𝑥
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Example 

If the sampling frequency is 𝑓𝑠  1000 𝐻𝑧, and the sample size is 𝑁  1024, then the 
frequency resolution is 

∆𝑓  
1000

1024
 0.9766 

𝐻𝑧

𝑏𝑖𝑛
 

 
 

  

𝑓

∆𝑓 2∆𝑓 3∆𝑓
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The discrete Fourier transform can also be calculated as a matrix multiplication. 

Introducing the notation 𝑊𝑁  𝑒−𝑖∙
2𝜋

𝑁  (then 𝑒−𝑖∙𝑘∙𝑛∙
2𝜋

𝑁  𝑊𝑁
𝑘∙𝑛), the transformation matrix 

is 

(

  
 

1 1 1 ⋯ 1
1 𝑊𝑁 𝑊𝑁

2 ⋯ 𝑊𝑁
𝑁−1

1 𝑊𝑁
2 𝑊𝑁

4 ⋯ 𝑊𝑁
2∙(𝑁−1)

⋮ ⋮ ⋮ ⋮

1 𝑊𝑁
𝑁−1 𝑊𝑁

2∙(𝑁−1) ⋯ 𝑊𝑁
(𝑁−1)2

)

  
 

 

If 𝑁  2, the transformation matrix is 

(
1 1
1 −1

) 

If 𝑁  4, the transformation matrix is 

(

1 1 1 1
1 −𝑖 −1 𝑖
1 −1 1 −1
1 𝑖 −1 −𝑖

) 
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If 𝑁  8, the transformation matrix is 

(

 
 
 
 
 

1 1 1 1 1 1 1 1
1 𝑟 −𝑖 −𝑖 ∙ 𝑟 −1 −𝑟 𝑖 𝑖 ∙ 𝑟
1 −𝑖 −1 𝑖 1 −𝑖 −1 𝑖
1 −𝑖 ∙ 𝑟 𝑖 𝑟 −1 𝑖 ∙ 𝑟 −𝑖 −𝑟
1 −1 1 −1 1 −1 1 −1
1 −𝑟 −𝑖 𝑖 ∙ 𝑟 −1 𝑟 𝑖 −𝑖 ∙ 𝑟
1 𝑖 −1 −𝑖 1 𝑖 −1 −𝑖
1 𝑖 ∙ 𝑟 𝑖 −𝑟 −1 −𝑖 ∙ 𝑟 −𝑖 𝑟 )

 
 
 
 
 

,     𝑟  
1

√2
∙ (1 − 𝑖) 
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Calculation with the matrix: 

(

𝑋[0]
𝑋[1]
⋮

𝑋[𝑁 − 1]

)  

(

  
 

1 1 1 ⋯ 1
1 𝑊𝑁 𝑊𝑁

2 ⋯ 𝑊𝑁
𝑁−1

1 𝑊𝑁
2 𝑊𝑁

4 ⋯ 𝑊𝑁
2∙(𝑁−1)

⋮ ⋮ ⋮ ⋮

1 𝑊𝑁
𝑁−1 𝑊𝑁

2∙(𝑁−1) ⋯ 𝑊𝑁
(𝑁−1)2

)

  
 
∙ (

𝑥[0]
𝑥[1]
⋮

𝑥[𝑁 − 1]

) 

The inverse transformation is 

𝑥[𝑛]  
1

𝑁
∙ ∑ 𝑋[𝑘] ∙ 𝑒𝑖∙𝑘∙𝑛∙

2𝜋
𝑁

𝑁−1

𝑘= 

 
1

𝑁
∙ ∑ 𝑋[𝑘] ∙ 𝑊𝑁

−𝑘∙𝑛

𝑁−1

𝑘= 

  

 
1

𝑁
∙ ∑ 𝑋[𝑘] ∙ (𝑊𝑁

𝑘∙𝑛)
∗

𝑁−1

𝑘= 

,     𝑛  0,1, … , 𝑁 − 1 

or in matrix form 

(

𝑥[0]
𝑥[1]
⋮

𝑥[𝑁 − 1]

)  
1

𝑁
∙

(

 
 
 

1 1 1 ⋯ 1

1 𝑊𝑁
−1 𝑊𝑁

−2 ⋯ 𝑊𝑁
−(𝑁−1)

1 𝑊𝑁
−2 𝑊𝑁

4 ⋯ 𝑊𝑁
−2∙(𝑁−1)

⋮ ⋮ ⋮ ⋮

1 𝑊𝑁
−(𝑁−1) 𝑊𝑁

−2∙(𝑁−1) ⋯ 𝑊𝑁
−(𝑁−1)2

)

 
 
 
∙ (

𝑋[0]
𝑋[1]
⋮

𝑋[𝑁 − 1]

) 



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 231 

Fast Fourier Transform (FFT) 

Formula of DFT is 

𝑋[𝑘]  ∑ 𝑥[𝑛] ∙ 𝑒−𝑖∙𝑘∙𝑛∙
2𝜋
𝑁

𝑁−1

𝑛= 

 ∑ 𝑥[𝑛] ∙ 𝑊𝑁
𝑘∙𝑛

𝑁−1

𝑛= 

,     𝑘  0,1, … , 𝑁 − 1 

where 𝑊𝑁  𝑒−𝑖∙
2𝜋

𝑁 , or in matrix form 

(

𝑋[0]
𝑋[1]
⋮

𝑋[𝑁 − 1]

)  

(

  
 

1 1 1 ⋯ 1
1 𝑊𝑁 𝑊𝑁

2 ⋯ 𝑊𝑁
𝑁−1

1 𝑊𝑁
2 𝑊𝑁

4 ⋯ 𝑊𝑁
2∙(𝑁−1)

⋮ ⋮ ⋮ ⋮

1 𝑊𝑁
𝑁−1 𝑊𝑁

2∙(𝑁−1) ⋯ 𝑊𝑁
(𝑁−1)2

)

  
 
∙ (

𝑥[0]
𝑥[1]
⋮

𝑥[𝑁 − 1]

). 

It is clear from the formulas that a DFT requires the evaluation of polynomial 

𝐴(𝑥)  𝑎  𝑎1 ∙ 𝑥  𝑎2 ∙ 𝑥
2 . . .  𝑎𝑁−1 ∙ 𝑥

𝑁−1 

where 

𝑎  𝑥[0], 𝑎1  𝑥[1], . . . , 𝑎𝑁−1  𝑥[𝑁 − 1] 

on a special set 

{1,𝑊𝑁,𝑊𝑁
2, . . . ,𝑊𝑁

𝑁−1},           𝑊𝑁  𝑒−𝑖∙
2𝜋
𝑁 ,    (𝑊𝑛  1) 
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which is a so-called collapse set. 

(𝑋 is a collapse set if |𝑋2|  
1

2
∙ |𝑋| or 𝑋  {1}, where |𝑋| denotes the number of elements 

in 𝑋.) 

(

 
 

1 1 1 ⋯ 1
1 𝑊 𝑊2 ⋯ 𝑊𝑁−1

1 𝑊2 𝑊4 ⋯ 𝑊2(𝑁−1)

⋮ ⋮ ⋮ ⋮

1 𝑊𝑁−1 𝑊2(𝑁−1) ⋯ 𝑊(𝑁−1)2)

 
 
∙ (

𝑎 
𝑎1
⋮

𝑎𝑁−1

). 

To reduce the computational time (number of steps) we use recursively that 

𝐴(𝑥)  𝐴even(𝑥
2)  𝑥 ∙ 𝐴odd(𝑥

2) 

where 

𝐴even(𝑥)  𝑎  𝑎2 ∙ 𝑥  𝑎4 ∙ 𝑥
2 . . .  𝑎𝑁−2 ∙ 𝑥

𝑁
2
−1  ∑ 𝑎2𝑘 ∙ 𝑥

𝑘

𝑁
2
−1

𝑘= 

 

𝐴odd(𝑥)  𝑎1  𝑎3 ∙ 𝑥  𝑎5 ∙ 𝑥
2 . . .  𝑎𝑁−1 ∙ 𝑥

𝑁
2
−1  ∑ 𝑎2𝑘+1 ∙ 𝑥

𝑘

𝑁
2
−1

𝑘= 
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Decimation in time 

Here we suppose that 𝑁 is even (in practice 𝑁 is a power of 2). 

𝑋[𝑘]  ∑ 𝑥[𝑛] ∙ 𝑊𝑁
𝑘∙𝑛

𝑁−1

𝑛= 

 ∑ 𝑥[𝑛] ∙ 𝑊𝑁
𝑘∙𝑛

𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛

 ∑ 𝑥[𝑛] ∙ 𝑊𝑁
𝑘∙𝑛

𝑛 𝑖𝑠 𝑜𝑑𝑑

  

 ∑ 𝑥[2 ∙ 𝑟] ∙ 𝑊𝑁
2∙𝑟∙𝑘

𝑁
2
−1

𝑟= 

 ∑ 𝑥[2 ∙ 𝑟  1] ∙ 𝑊𝑁
(2∙𝑟+1)∙𝑘

𝑁
2
−1

𝑟= 

  

 ∑ 𝑥[2 ∙ 𝑟] ∙ (𝑊𝑁
2∙)𝑟∙𝑘

𝑁
2
−1

𝑟= 

 𝑊𝑁
𝑘 ∙ ∑ 𝑥[2 ∙ 𝑟  1] ∙ (𝑊𝑁

2∙)𝑟∙𝑘

𝑁
2
−1

𝑟= 

  

 ∑ 𝑥[2 ∙ 𝑟] ∙ 𝑊𝑁
2

𝑟∙𝑘

𝑁
2
−1

𝑟= 

 𝑊𝑁
𝑘 ∙ ∑ 𝑥[2 ∙ 𝑟  1] ∙ 𝑊𝑁

2

𝑟∙𝑘

𝑁
2
−1

𝑟= 
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Since 

𝐺[𝑘]  ∑ 𝑥[2 ∙ 𝑟] ∙ 𝑊𝑁
2

𝑟∙𝑘

𝑁
2
−1

𝑟= 

   𝑎𝑛𝑑   𝐻[𝑘]  ∑ 𝑥[2 ∙ 𝑟  1] ∙ 𝑊𝑁
2

𝑟∙𝑘

𝑁
2
−1

𝑟= 

 

are 
𝑁

2
 point DFTs, we have that the calculation of an 𝑁 point DFTs can be led back to the 

calculation of two 
𝑁

2
 point DFTs: 

𝑋[𝑘]  𝐺[𝑘]  𝑊𝑁
𝑘 ∙ 𝐻[𝑘] 

where 𝐺[𝑘] is calculated from values 𝑋[0], 𝑋[2], 𝑋[4], . . . , 𝑋[𝑁 − 2], while 𝐻[𝑘] is 

calculated from values 𝑋[1], 𝑋[3], 𝑋[5], . . . , 𝑋[𝑁 − 1]. 
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2-point DFT 

(
𝑋[0]
𝑋[1]

)  (
1 1
1 −1

) ∙ (
𝑥[0]
𝑥[1]

) 
𝑋[0]  𝑥[0]  𝑥[1] 

𝑋[1]  𝑥[0] − 𝑥[1] 

  
2nd roots of the unity 

 

  

N=2
DFT
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2-point inverse DFT 

(
𝑥[0]
𝑥[1]

)  
1

2
∙ (
1 1
1 −1

) ∙ (
𝑋[0]
𝑋[1]

) 

𝑥[0]  
1

2
∙ (𝑋[0]  𝑋[1]) 

𝑋[1]  
1

2
∙ (𝑋[0] − 𝑋[1]) 

4-point DFT 

(

𝑋[0]

𝑋[1]
𝑋[2]
𝑋[3]

)  (

1 1 1 1
1 −𝑖 −1 𝑖
1 −1 1 −1
1 𝑖 −1 −𝑖

) ∙ (

𝑥[0]

𝑥[1]
𝑥[2]
𝑥[3]

) 

𝑋[0]  𝑥[0]  𝑥[1]  𝑥[2]  𝑥[3] 

𝑋[1]  𝑥[0] − 𝑖 ∙ 𝑥[1] − 𝑥[2]  𝑖 ∙ 𝑥[3] 

𝑋[2]  𝑥[0] − 𝑥[1]  𝑥[2] − 𝑥[3] 

𝑋[3]  𝑥[0]  𝑖 ∙ 𝑥[1] − 𝑥[2] − 𝑖 ∙ 𝑥[3] 
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𝑋[0]   𝐺[0]  1 ∙ 𝐻[0]   𝑥[0]  𝑥[2]  𝑥[1]  𝑥[3]  𝑥[0]  𝑥[1]  𝑥[2]  𝑥[3] 

𝑋[1]   𝐺[1] − 𝑖 ∙ 𝐻[1]   𝑥[0] − 𝑥[2] − 𝑖 ∙ (𝑥[1] − 𝑥[3])  𝑥[0] − 𝑖 ∙ 𝑥[1] − 𝑥[2]  𝑖 ∙ 𝑥[3] 

𝑋[2]   𝐺[0] − 1 ∙ 𝐻[0]   𝑥[0]  𝑥[2] − (𝑥[1]  𝑥[3])  𝑥[0] − 𝑥[1]  𝑥[2] − 𝑥[3] 

𝑋[3]   𝐺[1] − 𝑖 ∙ 𝐻[1]   𝑥[0] − 𝑥[2]  𝑖 ∙ (𝑥[1] − 𝑥[3])  𝑥[0]  𝑖 ∙ 𝑥[1] − 𝑥[2] − 𝑖 ∙ 𝑥[3] 

 

  

N=4
DFT

N=2
DFT

N=2
DFT
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4th roots of the unity 

 

4-point inverse DFT 

(

𝑥[0]

𝑥[1]
𝑥[2]
𝑥[3]

)  
1

4
∙ (

1 1 1 1
1 𝑖 −1 −𝑖
1 −1 1 −1
1 −𝑖 −1 𝑖

) ∙ (

𝑋[0]

𝑋[1]
𝑋[2]
𝑋[3]

) 

𝑋[0]  𝑥[0]  𝑥[1]  𝑥[2]  𝑥[3] 

𝑋[1]  𝑥[0]  𝑖 ∙ 𝑥[1] − 𝑥[2] − 𝑖 ∙ 𝑥[3] 

𝑋[2]  𝑥[0] − 𝑥[1]  𝑥[2] − 𝑥[3] 

𝑋[3]  𝑥[0] − 𝑖 ∙ 𝑥[1] − 𝑥[2]  𝑖 ∙ 𝑥[3] 
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8-point DFT 

(

 
 
 
 
 
 

𝑋[0]
𝑋[1]
𝑋[2]
𝑋[3]
𝑋[4]
𝑋[5]

𝑋[6]
𝑋[7])

 
 
 
 
 
 

 

(

 
 
 
 
 
 
 
 
 
 

1 1 1 1 1 1 1 1

1
1

√2
∙ (1 − 𝑖) −𝑖

1

√2
∙ (−1 − 𝑖) −1

1

√2
∙ (−1  𝑖) 𝑖

1

√2
∙ (1  𝑖)

1 −𝑖 −1 𝑖 1 −𝑖 −1 𝑖

1
1

√2
∙ (−1 − 𝑖) 𝑖

1

√2
∙ (1 − 𝑖) −1

1

√2
∙ (1  𝑖) −𝑖

1

√2
∙ (−1  𝑖)

1 −1 1 −1 1 −1 1 −1

1
1

√2
∙ (−1  𝑖) −𝑖

1

√2
∙ (1  𝑖) −1

1

√2
∙ (1 − 𝑖) 𝑖

1

√2
∙ (−1 − 𝑖)

1 𝑖 −1 −𝑖 1 𝑖 −1 −𝑖

1
1

√2
∙ (1  𝑖) 𝑖

1

√2
∙ (−1  𝑖) −1

1

√2
∙ (−1 − 𝑖) −𝑖

1

√2
∙ (1 − 𝑖)

)

 
 
 
 
 
 
 
 
 
 

∙

(

 
 
 
 
 
 

𝑥[0]
𝑥[1]
𝑥[2]
𝑥[3]
𝑥[4]
𝑥[5]

𝑥[6]
𝑥[7])
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N=8
DFT

N=4
DFT

N=4
DFT
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N=2
DFT

N=2
DFT

N=2
DFT

N=2
DFT
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8th roots of the unity 
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6th week – Questions 
 

Question 1 

Give the formula of the continuous Fourier transform 

Answer 

ℱ𝒯(𝑥)( )  �̂�( )  ∫ 𝑥( ) ∙ 𝑒−𝑖∙𝜔∙𝑡
∞

−∞

𝑑 ,    ∈ ℝ 
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Question 2 

Give the formula of the discrete Fourier transform 

Answer 

𝑋[𝑘]  ∑ 𝑥[𝑛] ∙ 𝑒−𝑖∙𝑘∙𝑛∙
2𝜋
𝑁

𝑁−1

𝑛= 

,     𝑘  0,1, … , 𝑁 − 1 
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Question 3 

Give the transformation matrix of the 4-point DFT 

Answer 

(

1 1 1 1
1 −𝑖 −1 𝑖
1 −1 1 −1
1 𝑖 −1 −𝑖

) 
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6th week – Exercises 
Exercise 

Determine the convolution of functions 𝑓: [0,∞[→ ℝ and 𝑔: [0,∞[→ ℝ defined as 

𝑓( )  𝑒−2∙𝑡,     𝑔( )  𝑒5∙𝑡. 

Solution 

(𝑓 ∗ 𝑔)( )  𝑒−2∙𝑡 ∗ 𝑒5∙𝑡  ∫𝑒−2∙𝜏 ∙ 𝑒5∙(𝑡−𝜏)
𝑡

 

𝑑𝜏  𝑒5∙𝑡 ∙ ∫ 𝑒−7∙𝜏
𝑡

 

𝑑𝜏   

 
−1

7
∙ 𝑒5∙𝑡 ∙ [𝑒−7∙𝜏] 

𝑡  
−1

7
∙ 𝑒5∙𝑡 ∙ (𝑒−7∙𝑡 − 1)  

−1

7
∙ 𝑒−2∙𝑡  

1

7
𝑒5∙𝑡 
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Exercise 

Determine the convolution of functions 𝑥: [0,∞[→ ℝ and ℎ: [0,∞[→ ℝ defined as 

𝑥( )  5 − 3,     ℎ( )  𝑒−
1
2
∙𝑡. 

Solution 

(𝑥 ∗ ℎ)( )  (5 − 3) ∗ 𝑒−
1
2
∙𝑡  ∫(5𝜏 − 3) ∙ 𝑒−(𝑡−𝜏)

𝑡

 

𝑑𝜏   

 [(5𝜏 − 8) ∙ 𝑒−(𝑡−𝜏)]
𝜏= 

𝑡
 5 − 8  8 ∙ 𝑒−𝑡 

Details of the calculation (integration by parts): 

∫(5𝜏 − 3) ∙ 𝑒−(𝑡−𝜏) 𝑑𝜏  (5𝜏 − 3) ∙ 𝑒−(𝑡−𝜏) − 5 ∙ ∫𝑒−(𝑡−𝜏) 𝑑   

[
𝑔(𝜏)  5𝜏 − 3

𝑓′(𝜏)  𝑒−(𝑡−𝜏)
   ⟹    

𝑔′(𝜏)  5

𝑓(𝜏)  𝑒−(𝑡−𝜏)
] 

 (5𝜏 − 3) ∙ 𝑒−(𝑡−𝜏) − 5 ∙ 𝑒−(𝑡−𝜏)  (5𝜏 − 8) ∙ 𝑒−(𝑡−𝜏) 
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Exercise 

Determine the discrete Fourier transform of the sampled signal. 

𝑛 0 1 2 3 

𝑥[𝑛] 0 1 0 -1 
 

 
Plot the complex numbers in the complex plane appearing in the sums. 

Solution 

𝑋[0]  ∑𝑥[𝑛] ∙ 𝑒−𝑖∙ ∙𝑛∙
2𝜋
4

3

𝑛= 

 ∑𝑥[𝑛]

3

𝑛= 

 0  1  0 − 1  0 

𝑋[1]  ∑𝑥[𝑛] ∙ 𝑒−𝑖∙1∙𝑛∙
2𝜋
4

3

𝑛= 

 ∑𝑥[𝑛] ∙ 𝑒−𝑖∙𝑛∙
𝜋
2

3

𝑛= 

  

 0 ∙ 𝑒−𝑖∙ ∙
𝜋
2  1 ∙ 𝑒−𝑖∙1∙

𝜋
2  0 ∙ 𝑒−𝑖∙2∙

𝜋
2 − 1 ∙ 𝑒−𝑖∙3∙

𝜋
2  𝑒−𝑖∙

𝜋
2 − 𝑒−𝑖∙3∙

𝜋
2   

 (   (−
𝜋

2
)  𝑖 ∙    (−

𝜋

2
)) − (   (−

3𝜋

2
)  𝑖 ∙    (−

3𝜋

2
))  0 − 𝑖  0 − 𝑖  −2 ∙ 𝑖 

0 1 2 3

1

−1

𝑥[𝑛]
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Values in the sum giving 𝑋[0] Values in the sum giving 𝑋[1] 

  

𝑋[2]  ∑𝑥[𝑛] ∙ 𝑒−𝑖∙2∙𝑛∙
2𝜋
4

3

𝑛= 

 ∑𝑥[𝑛] ∙ 𝑒−𝑖∙𝑛∙𝜋
3

𝑛= 

  

 0 ∙ 𝑒−𝑖∙ ∙𝜋  1 ∙ 𝑒−𝑖∙1∙𝜋  0 ∙ 𝑒−𝑖∙2∙𝜋 − 1 ∙ 𝑒−𝑖∙3∙𝜋  𝑒−𝑖∙𝜋 − 𝑒−𝑖∙3∙𝜋   

 (   (−𝜋)  𝑖 ∙    (−𝜋)) − (   (−3𝜋)  𝑖 ∙    (−3𝜋))  0 − 1  0  1  0 

𝑋[3]  ∑𝑥[𝑛] ∙ 𝑒−𝑖∙3∙𝑛∙
2𝜋
4

3

𝑛= 

 ∑𝑥[𝑛] ∙ 𝑒−𝑖∙𝑛∙
3𝜋
2

3

𝑛= 

  

 0 ∙ 𝑒−𝑖∙ ∙
3𝜋
2  1 ∙ 𝑒−𝑖∙1∙

3𝜋
2  0 ∙ 𝑒−𝑖∙2∙

3𝜋
2 − 1 ∙ 𝑒−𝑖∙3∙

3𝜋
2  𝑒−𝑖∙

3𝜋
2 − 𝑒−𝑖∙3∙

3𝜋
2   

1

Im

Re

1

1e1 4

1
02i

=
− 

1e1 4

3
02i

−=−
− 

1

Im

Re

1

ie1 4

1
12i

−=
− 

ie1 4

3
12i

−=−
− 



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 250 

 (   (−
3𝜋

2
)  𝑖 ∙    (−

3𝜋

2
)) − (   (−

9𝜋

2
)  𝑖 ∙    (−

9𝜋

2
))  0  𝑖  0  𝑖  2 ∙ 𝑖 

Values in the sum giving 𝑋[2] Values in the sum giving 𝑋[3] 

  
 

𝑘 0 1 2 3 

𝑋[𝑘] 0 −2 ∙ 𝑖 0 2 ∙ 𝑖 

|𝑋[𝑘]| 0 2 0 2 

 

  

Im

Re

1

1e1 4

3
22i

=−
− 

1e1 4

1
22i

−=
− 

1

Im

Re

ie1 4

1
32i

=
− 

ie1 4

3
32i

=−
− 
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Calculation with the transformation matrix: 

(

1 1 1 1
1 −𝑖 −1 𝑖
1 −1 1 −1
1 𝑖 −1 −𝑖

) ∙ (

0
1
0
−1

)  (

0
−2 ∙ 𝑖
0
2 ∙ 𝑖

)  (

𝑋[0]

𝑋[1]
𝑋[2]
𝑋[3]

) 
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Exercise 

Determine the discrete Fourier transform of the sampled signal 

𝑛 0 1 2 3 

𝑥[𝑛] 8 4 8 0 

using the transformation matrix. 

Solution 

(

1 1 1 1
1 −𝑖 −1 𝑖
1 −1 1 −1
1 𝑖 −1 −𝑖

) ∙ (

8
4
8
0

)  (

20
−4 ∙ 𝑖
12
4 ∙ 𝑖

)  (

𝑋[0]

𝑋[1]
𝑋[2]
𝑋[3]

) 
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Exercise 

Determine the Fourier transform of the rectangular pulse function 

𝑥( )  {
1    | | ≤ 𝑇
0    | | > 𝑇

 

Solution 

�̂�( )  ∫ 𝑒−𝑖∙𝜔∙𝑡
𝑇

𝑡=−𝑇

𝑑  
−1

𝑖 ∙  
∙ [𝑒−𝑖∙𝜔∙𝑡]

𝑡=−𝑇

𝑇
 

−1

𝑖 ∙  
∙ (𝑒−𝑖∙𝜔∙𝑇 − 𝑒𝑖∙𝜔∙𝑇)   

 2 ∙
1

 
∙
𝑒𝑖∙𝜔∙𝑇 − 𝑒−𝑖∙𝜔∙𝑇

2𝑖
 2 ∙

   ( ∙ 𝑇)

 
 

 

 
 

  

−𝑇

𝑥( )

 

1

𝑇

2𝑇

−𝜋

𝑇

𝜋

𝑇

 

𝑥( )
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Exercise 

Determine the Fourier transform of the one-sided decaying exponential function 

𝑥( )  {
0     < 0

𝑒−𝑎∙𝑡     ≥ 0
,     𝑎 > 0 

Solution 

�̂�( )  ∫ 𝑒−𝑎∙𝑡 ∙ 𝑒−𝑖∙𝜔∙𝑡
∞

 

𝑑  ∫ 𝑒−(𝑎+𝑖∙𝜔)∙𝑡
∞

 

𝑑     
𝑏→∞

∙ ∫ 𝑒−(𝑎+𝑖∙𝜔)∙𝑡
𝑏

 

𝑑   

 
−1

𝑎  𝑖 ∙  
∙    
𝑏→∞

[𝑒−(𝑎+𝑖∙𝜔)∙𝑡]
𝑡= 

𝑏
 

−1

1  𝑖 ∙  
∙    
𝑏→∞

(𝑒−(𝑎+𝑖∙𝜔)∙𝑏 − 1)  
1

𝑎  𝑖 ∙  
 
𝑎 − 𝑖 ∙  

𝑎2   2
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Exercise 

Determine the Fourier transform of the one-sided growing exponential function 

𝑥( )  {
0 𝑖𝑓  < 0

𝑒𝑎∙𝑡 𝑖𝑓  ≥ 0
,     𝑎 > 0 

Solution 

The Fourier transform doesn’t exist. 
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Exercise 

Determine the Fourier transform of function 

𝑥( )  𝑒−𝑎∙|𝑡|,   𝑎 > 0 

Solution 

𝑥( )  ∫ 𝑒−𝑎∙|𝑡| ∙ 𝑒−𝑖∙𝜔∙𝑡
∞

 

𝑑  ∫ 𝑒𝑎∙𝑡 ∙ 𝑒−𝑖∙𝜔∙𝑡
 

−∞

𝑑  ∫ 𝑒−𝑎∙𝑡 ∙ 𝑒−𝑖∙𝜔∙𝑡
∞

 

𝑑   

    
𝑏→−∞

∫𝑒(𝑎−𝑖∙𝜔)∙𝑡
 

𝑏

𝑑     
𝑏→∞

∙ ∫ 𝑒−(𝑎+𝑖∙𝜔)∙𝑡
𝑏

 

𝑑   

 
1

𝑎 − 𝑖 ∙  
∙    
𝑏→−∞

[𝑒(𝑎−𝑖∙𝜔)∙𝑡]
𝑡=𝑏

 
 

−1

𝑎  𝑖 ∙  
∙    
𝑏→∞

[𝑒−(𝑎+𝑖∙𝜔)∙𝑡]
𝑡= 

𝑏
  

 
1

𝑎 − 𝑖 ∙  
∙    
𝑏→∞

(1 − 𝑒(𝑎−𝑖∙𝜔)∙𝑏) −
1

𝑎  𝑖 ∙  
∙    
𝑏→∞

(1 − 𝑒−(𝑎+𝑖∙𝜔)∙𝑏)  
1

𝑎 − 𝑖 ∙  
 

1

𝑎  𝑖 ∙  
 

2𝑎

𝑎2   2
 

 

1

 

𝑥( ) 𝑥( )

2/𝑎
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Exercise 

Determine symbolically the Fourier transform of constant function 𝑥( )  1 using the 
Fourier transform of the unit step function. 

Solution 

The constant function 𝑥( )  1 is the sum of the unit step function and the negative unit 
step function, thus 

�̂�( )  ∫ 𝑒−𝑖∙𝜔∙𝑡
∞

𝑡=−∞

𝑑  ∫ 𝑒−𝑖∙𝜔∙𝑡
 

𝑡=−∞

𝑑  ∫ 𝑒−𝑖∙𝜔∙𝑡
∞

𝑡= 

𝑑  2𝜋 ∙ 𝛿( ) 
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Exercise 

Determine symbolically the Fourier transform of periodic function 𝑥( )     (  ∙  ) 

using that ∫ 𝑒−𝑖∙𝜔∙𝑡
∞

𝑡=−∞
𝑑  2𝜋 ∙ 𝛿( ). 

Solution 

�̂�( )  ∫    (  ∙  ) ∙ 𝑒
−𝑖∙𝜔∙𝑡

∞

𝑡=−∞

𝑑  
1

2
∙ ∫ (𝑒𝑖∙𝜔0∙𝑡  𝑒−𝑖∙𝜔0∙𝑡) ∙ 𝑒−𝑖∙𝜔∙𝑡

∞

𝑡=−∞

𝑑   

 
1

2
∙ ∫ (𝑒−𝑖∙(𝜔−𝜔0)∙𝑡  𝑒−𝑖∙(𝜔+𝜔0)∙𝑡)

∞

𝑡=−∞

𝑑  𝜋 ∙ 𝛿( −   )  𝜋 ∙ 𝛿(    ) 

 
  

𝑥( )

 

𝜋

−    
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Exercise 

Determine symbolically the Fourier transform of periodic function 𝑥( )     (  ∙  ) 

using that ∫ 𝑒−𝑖∙𝜔∙𝑡
∞

𝑡=−∞
𝑑  2𝜋 ∙ 𝛿( ). 

Solution 

�̂�( )  ∫    (  ∙  ) ∙ 𝑒
−𝑖∙𝜔∙𝑡

∞

𝑡=−∞

𝑑  
1

2𝑖
∙ ∫ (𝑒𝑖∙𝜔0∙𝑡 − 𝑒−𝑖∙𝜔0∙𝑡) ∙ 𝑒−𝑖∙𝜔∙𝑡

∞

𝑡=−∞

𝑑   

 
1

2𝑖
∙ ∫ (𝑒−𝑖∙(𝜔−𝜔0)∙𝑡 − 𝑒−𝑖∙(𝜔+𝜔0)∙𝑡)

∞

𝑡=−∞

𝑑  −𝑖 ∙ 𝜋 ∙ 𝛿( −   )  𝑖 ∙ 𝜋 ∙ 𝛿(    ) 

 
 

𝑥( )

 

𝜋  𝑖

−  

  

−𝜋  𝑖
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7th week 
 

 

7 Cepstrum Analysis, Envelope Analysis 
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In Fourier analysis, the cepstrum is the result of computing the inverse Fourier transform 
(IFT) of the logarithm of the estimated signal spectrum. The method is a tool for 
investigating periodic structures in frequency spectra. The power cepstrum has 
applications in the analysis of human speech. 

 

The term cepstrum was derived by reversing the first four letters of spectrum. Operations 
on cepstra are labelled quefrency analysis (or quefrency analysis), liftering, or cepstral 
analysis. 
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[6] 
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The cepstrum is the result of following sequence of mathematical operations: 

transformation of a signal from the time domain to the frequency domain, computation of 
the logarithm of the spectral amplitude, transformation to quefrency domain, where the 
final independent variable, the quefrency, has a time scale. 

 

The cepstrum is used in many variants. Most important are: 

Power cepstrum: The logarithm is taken from the "power spectrum" 

Complex cepstrum: The logarithm is taken from the spectrum, which is calculated via 
Fourier analysis . 

 

The "cepstrum" was originally defined as power cepstrum by the following relationship 

 

𝐶𝑝  |𝐹−1{𝑙𝑜𝑔(|𝐹{𝑓( )}|2)}|2 

 



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 264 

The power cepstrum has main applications in analysis of sound and vibration signals. It is 

a complementary tool to spectral analysis 

𝐶𝑝  |𝐹 {𝑙𝑜𝑔(|𝐹{𝑓( )}|2)}|2 

 

Due to this formula, the cepstrum is also sometimes called the spectrum of a spectrum. It 

can be shown that both formulas are consistent with each other as the frequency spectral 

distribution remains the same, the only difference being a scaling factor which can be 

applied afterwards. Some articles prefer the second formula. 

Other notations are possible due to the fact, that the log of the power spectrum is equal to 

the log of the spectrum, if a scaling factor 2 is applied 

𝑙𝑜𝑔|𝐹|2  2 𝑙𝑜𝑔|𝐹| 

𝐶𝑝  |𝐹−1{2 𝑙𝑜𝑔|𝐹|}|2   ,   or 

𝐶𝑝  4 ∙ |𝐹−1{𝑙𝑜𝑔|𝐹|}|2  , 

which provides a relationship to the real cepstrum. 
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The real cepstrum is directly related to the power cepstrum: 

𝐶𝑝  4 ∙ 𝐶𝑟
2 

It is derived from the complex cepstrum (defined below) by discarding the phase 

information (contained in the imaginary part of the complex logarithm).[5] It has a focus 

on periodic effects in the amplitudes of the spectrum: 

𝐶𝑟  𝐹−1{𝑙𝑜𝑔(|𝐹{𝑓( )}|)} 

The independent variable of a cepstral graph is called the quefrency.[11] The quefrency is 

a measure of time, though not in the sense of a signal in the time domain. For example, if 

the sampling rate of an audio signal is 44100 Hz and there is a large peak in the cepstrum 

whose quefrency is 100 samples, the peak indicates the presence of a fundamental 

frequency that is 44100/100 = 441 Hz. This peak occurs in the cepstrum because the 

harmonics in the spectrum are periodic and the period corresponds to the fundamental 

frequency, since harmonics are integer multiples of the fundamental frequency. 

The kepstrum, which stands for "Kolmogorov-equation power-series time response", is 

similar to the cepstrum and has the same relation to it as expected value has to statistical 

average, i.e. cepstrum is the empirically measured quantity, while kepstrum is the 

theoretical quantity. It was in use before the cepstrum. 
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The autocepstrum is defined as the cepstrum of the autocorrelation. The autocepstrum is 

more accurate than the cepstrum in the analysis of data with echoes. 

Playing further on the anagram theme, a filter that operates on a cepstrum might be called 

a lifter. A low-pass lifter is similar to a low-pass filter in the frequency domain. It can be 

implemented by multiplying by a window in the quefrency domain and then converting 

back to the frequency domain, resulting in a modified signal, i.e. with signal echo being 

reduced. 

The cepstrum can be seen as information about the rate of change in the different spectrum 

bands. It was originally invented for characterizing the seismic echoes resulting from 

earthquakes and bomb explosions. It has also been used to determine the fundamental 

frequency of human speech and to analyze radar signal returns. Cepstrum pitch 

determination is particularly effective because the effects of the vocal excitation (pitch) and 

vocal tract (formants) are additive in the logarithm of the power spectrum and thus clearly 

separate. 
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Applications: 

The concept of the cepstrum has led to numerous applications: 

dealing with reflection inference (radar, sonar applications, earth seismology) 

estimation of speaker fundamental frequency (pitch) 

speech analysis and recognition 

medical applications in analysis of electroencephalogram (EEG) and brain waves 

machine vibration analysis based on harmonic patterns (gearbox faults, turbine blade 

failures. 

Recently cepstrum based deconvolution was used to remove the effect of the stochastic 

impulse trains, which originates an sEMG signal, from the power spectrum of sEMG signal 

itself. In this way, only information on motor unit action potential (MUAP) shape and 

amplitude were maintained, and then, used to estimate the parameters of a time-domain 

model of the MUAP itself. 
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A short-time cepstrum analysis was proposed by Schroeder and Noll for application to pitch 

determination of human speech. 

Envelope Analysis 

Envelope Detection or Amplitude 

Demodulation is the technique of extracting the modulating signal from an amplitude-

modulated signal. The result is the time history of the modulating signal. This signal may be 

studied/interpreted as it is in the time domain or it may be subjected to a subsequent 

frequency analysis. Envelope Analysis is the FFT (Fast Fourier Transform) frequency 

spectrum of the modulating signal. 

Envelope Analysis can be used for diagnostics/investigation of machinery where faults 

have an amplitude modulating effect on the characteristic frequencies of the machinery. 

Examples include faults in gearboxes, turbines and induction motors. Envelope Analysis is 

also an excellent tool for diagnostics of local faults like cracks and spallings in Rolling 

Element Bearings (REB). 

 

Because the vibration signals of a faulty bearing are small compared to shaft order and gear 

mesh frequency, detection of faults at the bearing rate frequencies using Fourier analysis is 
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difficult. Fault detection at the baseband frequencies of the bearing rate is “Stage 1” fault 

detection. Bearing faults detected using these types of analysis are Late Stage; the bearing 

can be close to catastrophic failure. At the very least, a bearing in this state is generating 

metal which can cause damage to other components within the gearbox. 

Ultrasonic emission can detect bearing inner and outer race roughness (a “Stage 3” fault), 

but the remaining useful life of a bearing at this stage is relatively long compared to the 

overall life of the bearing. Bearing envelope analysis (BEA) can typically detect bearing 

faults 100s if not 1000s of hours prior to when it is appropriate to do maintenance. It is for 

this reason that many condition monitoring systems manufacturers are using envelope 

analysis techniques.  

THE BEARING ENVELOPE ANALYSIS: BEA is based on demodulation of high frequency 

resonance associated with bearing element impacts. For rolling element bearings, when the 

rolling elements strike a local fault on the inner or outer race, or a fault on a rolling element 

strikes the inner or outer race, an impact is produced. These impacts modulate a signal at 

the associated bearing pass frequencies, such as: Cage Pass Frequency (CPF), Ball Pass 

Frequency Outer Race (BPFO), Ball Pass Frequency Inner Race (BPFI), and Ball Fault 

Frequency (BFF). Figure (1) is an Outer Race Fault, where the BPFO is approximately 80 
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Hz. Note that the modulation rate, T1, is approximately 0.125 seconds (e.g. 1/80 Hz). The 

time T2, the period of the resonance, is approximately 1.12e-4 seconds, or about 9000 Hz. 

[7] 
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[7] 
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The faults cause certain fault frequencies determined by the bearing geometry and the 

rotational speed of the shaft. Basically, four types of them are distinguished: bearing pass 

frequency of outer race (BPFO), bearing pass frequency of inner race (BPFI), fundamental 

train frequency (FTF), ball spin frequency (BSF) which can be calculated by numerical way. 
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2
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where fr is the speed of the shaft, n is the number of rolling elements, φ is the contact angle, 

d is the ball diameter, D is the pitch diameter. 
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7th week – Questions 
 

Question 

What is the cepstrum of a digital signal and what are the main fields of application (3 

examples)? 

Answer 

Cepstrum is the result of following sequence of mathematical operations: 

transformation of a signal from the time domain to the frequency domain, computation of 
the logarithm of the spectral amplitude, transformation to quefrency domain, where the 
final independent variable, the quefrency, has a time scale. 

Power cepstrum: The logarithm is taken from the "power spectrum" 

Complex cepstrum: The logarithm is taken from the spectrum, which is calculated via 
Fourier analysis . 

The "cepstrum" was originally defined as power cepstrum by the following relationship 

𝐶𝑝  |𝐹−1{𝑙𝑜𝑔(|𝐹{𝑓( )}|2)}|2 

The power cepstrum has main applications in analysis of sound and vibration signals. It is 

a complementary tool to spectral analysis 
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𝐶𝑝  |𝐹 {𝑙𝑜𝑔(|𝐹{𝑓( )}|2)}|2 

Applications: 

- Speech analysis and recognition 

- Medical applications in analysis of electroencephalogram (EEG) and brain waves 

- Machine vibration analysis based on harmonic patterns (gearbox faults, turbine blade 

failures. 
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Question 

What is the bearing envelope analysis and its role in machine fault diagnosis? 

 

Answer 

Bearing envelope analysis (BEA) can typically detect bearing faults 100s if not 1000s of 

hours prior to when it is appropriate to do maintenance. It is for this reason that many 

condition monitoring systems manufacturers are using envelope analysis techniques.  

THE BEARING ENVELOPE ANALYSIS: BEA is based on demodulation of high frequency 

resonance associated with bearing element impacts. For rolling element bearings, when 

the rolling elements strike a local fault on the inner or outer race, or a fault on a rolling 

element strikes the inner or outer race, an impact is produced. These impacts modulate a 

signal at the associated bearing pass frequencies, such as: Cage Pass Frequency (CPF), Ball 

Pass Frequency Outer Race (BPFO), Ball Pass Frequency Inner Race (BPFI), and Ball Fault 

Frequency (BFF). 
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Question 

What are the bearing fault frequencies and what is the connection between these 

frequencies and the cepstrum analysis? 

Answer 

Bearing fault frequencies determined by the bearing geometry and the rotational speed of 

the shaft. Basically, four types of them are distinguished: bearing pass frequency of outer 

race (BPFO), bearing pass frequency of inner race (BPFI), fundamental train frequency 

(FTF), ball spin frequency (BSF) which can be calculated by numerical way.  

𝐵𝑃𝐹𝑂  
𝑛 ∙ 𝑓𝑟
2
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where fr is the speed of the shaft, n is the number of rolling elements, φ is the contact angle, 

d is the ball diameter, D is the pitch diameter. 

Using the cepstrum analysis, fault frequencies are identified in the spectrum and the 

engineer or the technical operator is able to determine the actual faults of the machine. 
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7th week – Exercises 
Exercise 

Use the echo detection application in MATLAB. Create a 45 Hz sine wave sampled at 100 

Hz. Add an echo of the signal, with half the amplitude, 0.2 seconds after the beginning of the 

signal. 

Compute and plot the complex cepstrum of the new signal. 

 

Solution 

t = 0:0.01:1.27; 

s1 = sin(2*pi*45*t); 

s2 = s1 + 0.5*[zeros(1,20) s1(1:108)]; 

 

c = cceps(s2); 
plot(t,c) 
The complex cepstrum shows a peak at 0.2 seconds, indicating the echo. 
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Exercise 

Load the speech signal. The recording is of a woman saying "MATLAB". The sampling 

frequency is 7418 Hz.  

Extract the segment from 0.1 to 0.25 seconds for analysis. Plot the cepstrum in the 

selected time range and overlay the peak. 

Solution 

load mtlb 
 
Use the spectrogram to identify a voiced segment for analysis 

segmentlen = 100; 
noverlap = 90; 
NFFT = 128; 
 
spectrogram(mtlb,segmentlen,noverlap,NFFT,Fs,'yaxis') 
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c = cceps(x); 

t = 0:dt:length(x)*dt-dt; 

trng = t(t>=2e-3 & t<=10e-3); 

crng = c(t>=2e-3 & t<=10e-3); 

[~,I] = max(crng); 

fprintf('Complex cepstrum F0 estimate is %3.2f Hz.\n',1/trng(I)) 

plot(trng*1e3,crng) 

xlabel('ms') 

hold on 

plot(trng(I)*1e3,crng(I),'o') 

hold off 
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Exercise 

Create a double sideband amplitude-modulated signal. The carrier frequency is 1 kHz. The 

modulation frequency is 50 Hz. The modulation depth is 100%. The sample rate is 10 kHz. 

Extract the envelope using the hilbert function. Plot the envelope along with the original 

signal. 

Solution 

t = 0:1e-4:0.1; 
x = (1+cos(2*pi*50*t)).*cos(2*pi*1000*t); 
 
 
plot(t,x) 
xlim([0 0.04]) 
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y = hilbert(x); 
env = abs(y); 
plot_param = {'Color', [0.6 0.1 0.2],'Linewidth',2};  
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plot(t,x) 
hold on 
plot(t,[-1;1]*env,plot_param{:}) 
hold off 
xlim([0 0.04]) 
title('Hilbert Envelope') 
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8th week 
 

 

8 Continuous and Discrete Wavelet Transform 
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Wavelet transform 

Unlike the Fourier transform, which expresses a signal as the sum of a series of single-
frequency sine and cosine functions, the wavelet transform decomposes a signal into a set 
of basis functions. 

These basis functions are obtained from a single base wavelet function by a two-step 
operation: scaling (through dilation and contraction of the base wavelet along the time 
axis), and time shift (i.e., translation along the time axis). Essentially, the wavelet transform 
process measures the ‘similarity’ between the signal being analysed and the base wavelet. 

Through variations of the scales and time shifts of the base wavelet function, features 
hidden within the signal can be extracted, without requiring the signal to have a dominant 
frequency band. It can be concluded that the wavelet transform provides a powerful 
mathematical tool for the analysis, characterization, and classification of non-stationary 
signals typically seen in manufacturing. 

The adaptive, multiresolution capability of the wavelet transform makes it well suited for 
decomposing signals of varying time and frequency resolutions that are characteristic of 
the underlying defect mechanisms associated with a machine, a dynamical structure, or a 
manufacturing process. Such capability makes the wavelet transform an enabling tool for 
advancing the science base of signal processing in manufacturing. 

Wavelets are enabling the analysis on several timescales of the local properties of complex 
signals that can present nonstationary zones. A wavelet is a function oscillating as a wave 
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but quickly damped. Being well localized simultaneously in time and frequency it makes it 
possible to define a family of analysing functions by translation in time and dilation in 
scale. Wavelets constitute a mathematical ‘zoom’ making it possible to simultaneously 
describe the properties of a signal on several timescales. 

A function 𝜓 will be called a wavelet if it verifies the admissibility condition 

𝐾𝜓  ∫
|�̂�( )|

2

| |

+∞

 

𝑑  ∫
|�̂�( )|

2

| |

 

−∞

𝑑 <  ∞ 

where �̂� indicates the Fourier transform of 𝜓. The admissibility condition involves, that 

the wavelet integrates to zero, that is, ∫ 𝜓(𝑥)
ℝ

𝑑𝑥  0. It is often reinforced by requiring 

that the wavelet has 𝑚 vanishing moments, i.e. 

∫ 𝑥𝑘 ∙ 𝜓(𝑥)

ℝ

𝑑𝑥  0,         𝑘  0, . . . , 𝑚 

The oscillation of a wavelet is measured by the number of vanishing moments and its 
localization is evaluated by the interval where it takes values significantly different from 
zero. 

Using translation and dilation a family of functions {𝜓𝑎,𝑏} is defined by 
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𝜓𝑎,𝑏(𝑥)  
1

√𝑎
 𝜓 (

𝑥 − 𝑏

𝑎
) 

for any scale 𝑎 ∈ ℝ+ and any position 𝑏 ∈ ℝ. If 𝜓 has norm 1 then all the functions 𝜓𝑎,𝑏 

have norm of 1. 

A signal 𝑓 of finite energy can be analysed by its wavelet coefficients 

𝐶𝑓(𝑎, 𝑏)  ∫ 𝑓(𝑥) ∙ 𝜓𝑎,𝑏
∗ (𝑥)

ℝ

𝑑𝑥,     𝑎 ∈ ℝ+, 𝑏 ∈ ℝ. 

The calculation of wavelet coefficients 𝐶𝑓 is called continuous wavelet transform. 

The 𝐶𝑓(𝑎, 𝑏) measures the fluctuation of function 𝑓 at scale 𝑎, it depends on the values of 𝑓 

in a neighbourhood of 𝑏 with a length proportional to 𝑎. Large values of 𝐶𝑓(𝑎, 𝑏) provide 

information on the local irregularity of f around position 𝑏 and at scale 𝑎. 

The squared magnitude of wavelet coefficients 

|𝐶𝑓(𝑎, 𝑏)|
2
 | ∫ 𝑓( ) ∙ 𝜓𝑎,𝑏

∗ (𝑥)

∞
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|
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constitutes the so-called scalogram, which is an important tool in evaluations based on 
wavelet transforms.  
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The coloured representation of scalogram in the time-frequency plane is a useful source of 
visual information e.g. in the identification of transients in vibration signal caused by 
surface defects of bearings. 

Large number of wavelets are defined in the literature and many of them are used in 
vibration diagnostics as well. Three examples are the Mexican Hat wavelet, the Morlet 
Wavelet and the Gaussian wavelet. 

The Mexican hat wavelet is a normalized, second derivative of a Gaussian function, which 
is mathematically defined as 

𝜓( )  
1

√2𝜋 ∙ 𝜎3
∙ (1 −

𝜎2

 2
) ∙ 𝑒

−
𝑡2

2𝜎2  

Figure shows the Mexican hat wavelet and its associated magnitude spectrum. 

 

The Morlet wavelet is defined as 

𝜓𝑀( )  
1

√𝜋 ∙ 𝑓𝑏
∙ 𝑒𝑗∙2𝜋𝑓𝑐∙𝑡 ∙ 𝑒

−
𝑡2

𝑓𝑏 
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where 𝑓𝑏 is the bandwidth parameter and 𝑓𝑐 denotes the wavelet center frequency. 

Figure shows the Morlet wavelet and its associated magnitude spectrum. 

 

 

The Gaussian function is expressed as 

𝑓( )  𝑒−𝑗∙𝑡 ∙ 𝑒−𝑡
2
 

Taking the 𝑁-th derivative of this function yields the Gaussian wavelet as 

𝜓𝐺( )  𝑐𝑁 ∙
𝑑(𝑁)𝑓( )

𝑑 𝑁
 

where 𝑁 ≥ 1 is an integer parameter and denotes the order of the wavelet, and 𝑐𝑁 is a 

constant introduced to ensure that ‖𝑓(𝑁)( )‖
2
 1. 



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 294 

Figure shows the Gaussian wavelet and its magnitude spectrum (𝑁  2). 

 

 

In numerical analysis and functional analysis, a discrete wavelet transform (DWT) is any 
wavelet transform for which the wavelets are discretely sampled. As with other wavelet 
transforms, a key advantage it has over Fourier transforms is temporal resolution: it 
captures both frequency and location information (location in time). 
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The DWT of a signal 𝑥 is calculated by passing it through a series of filters. First the samples 
are passed through a low pass filter with impulse response g resulting in a convolution of 
the two: 

𝑦[𝑛]  (𝑥 ∙ 𝑔)[𝑛]  ∑ 𝑥[𝑘]𝑔[𝑛 − 𝑘]

∞

𝑘=−∞

 

 

However, since half the frequencies of the signal have now been removed, half the samples 
can be discarded according to Nyquist’s rule. The filter output of the low-pass filter g in the 
diagram above is then subsampled by 2 and further processed by passing it again through 
a new low- pass filter g and a high- pass filter h with half the cut off frequency of the 
previous: 

𝑦𝑙𝑜𝑤[𝑛]  ∑ 𝑥[𝑘]𝑔[2𝑛 − 𝑘]

∞

𝑘=−∞

 

𝑦ℎ𝑖𝑔ℎ[𝑛]  ∑ 𝑥[𝑘]𝑔[2𝑛 − 𝑘]

∞

𝑘=−∞
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Levels of DWT composition (using MRA analysis) 
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𝜓𝑗,𝑘( )  
1

√2𝑗
𝜓(

 − 𝑘2𝑗

2𝑗
) 

where 𝑗 is the scale parameter and 𝑘 is the shift parameter, both which are integers. 

Vibrations signals in engineering diagnostics are non-stationary which means frequency-

domain representation (frequency spectrum) changes over time. The detection of low-

energy transients in the signal requires information about frequencies and also on the time 

when a particular frequency component present. Several time-frequency analysis methods 

are known which are able to provide both types of data, for instance the Windowed Fourier 

Transforms and the Wavelet Transforms (WT). Because of their flexibility, the wavelet 

transforms (and the related multiresolution analysis) can be used more effectively in the 

condition monitoring of machine elements when short time transient signals occur. 

Wavelets enable to analyse several timescales of the local properties of complex signals that 

can present non-stationary zones. A wavelet is a function oscillating as a wave but quickly 

damped. Being well localized simultaneously in time and frequency it makes it possible to 

define a family of analysing functions by translation in time and dilation in scale. Wavelets 



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 298 

constitute a mathematical “zoom” making it possible to simultaneously describe the 

properties of a signal on several timescales. 

 

Wavelet scalogram for representation 
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For instance, a ranking of wavelets can be generated with respect to their efficiency in 

bearing fault detection using the so-called Energy-to-Shannon entropy criteria using the 

scalograms. Values in the scalogram are related to the energy content of signal components. 

The representation of scalogram in the time-frequency plane is useful source of visual 

information e.g. in the identification of transients in vibration signal caused by surface 

defects of bearings. 

Supposing certain stronger properties than merely the admissibility condition we limit 

ourselves to the values  

𝑎  2𝑗 , 𝑏  𝑘 ∙ 2𝑗 ,         𝑗, 𝑘 ∈ 𝑍 

This idea leads to the discrete wavelet transform which is closely related to the so-called 

multi-resolution analysis (MRA). 

STFT is similar to the wavelet transform but it is the time-frequency analysis of the signal. 

  



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 300 

8th week – Questions 
 

Question 

What is the basic concept of the wavelet transform? 

Answer 

These basis functions are obtained from a single base wavelet function by a two-step 
operation: scaling (through dilation and contraction of the base wavelet along the time 
axis), and time shift (i.e., translation along the time axis). Essentially, the wavelet transform 
process measures the ‘similarity’ between the signal being analysed and the base wavelet. 

Through variations of the scales and time shifts of the base wavelet function, features 
hidden within the signal can be extracted, without requiring the signal to have a dominant 
frequency band. It can be concluded that the wavelet transform provides a powerful 
mathematical tool for the analysis, characterization, and classification of non-stationary 
signals typically seen in manufacturing. 

The adaptive, multiresolution capability of the wavelet transform makes it well suited for 

decomposing signals of varying time and frequency resolutions that are characteristic of 

the underlying defect mechanisms associated with a machine, a dynamical structure, or a 

manufacturing process. 
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Using translation and dilation a family of functions {𝜓𝑎,𝑏} is defined by 

𝜓𝑎,𝑏(𝑥)  
1

√𝑎
 𝜓 (

𝑥 − 𝑏

𝑎
) 

for any scale 𝑎 ∈ ℝ+ and any position 𝑏 ∈ ℝ. If 𝜓 has norm 1 then all the functions 𝜓𝑎,𝑏 

have norm of 1. 
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Question 

Which transform is better to recognize short time transients in the machine fault signals? 

Answer 

Vibrations signals in engineering diagnostics are non-stationary which means frequency-

domain representation (frequency spectrum) changes over time. The detection of low-

energy transients in the signal requires information about frequencies and also on the time 

when a particular frequency component present. Several time-frequency analysis methods 

are known which are able to provide both types of data, for instance the Windowed Fourier 

Transforms and the Wavelet Transforms (WT). Because of their flexibility, the wavelet 

transforms (and the related multiresolution analysis) can be used more effectively in the 

condition monitoring of machine elements when short time transient signals occur. 
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Question 

What conditions should be satisfied considering wavelet transform? 

Answer 

A function 𝜓 will be called a wavelet if it verifies the admissibility condition 

𝐾𝜓  ∫
|�̂�( )|

2

| |
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𝑑  ∫
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where �̂� indicates the Fourier transform of 𝜓. The admissibility condition involves, that 

the wavelet integrates to zero, that is, ∫ 𝜓(𝑥)
ℝ

𝑑𝑥  0. It is often reinforced by requiring 

that the wavelet has 𝑚 vanishing moments, i.e. 

∫ 𝑥𝑘 ∙ 𝜓(𝑥)

ℝ

𝑑𝑥  0,         𝑘  0, . . . , 𝑚 
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8th week – Exercises 
 

Exercise 

Create the MATLAB code for edge detection of images with wavelet transform! 

Solution 

wname='bior4.4'; 

[ca1,ch1,cv1,cd1] = dwt2(imagein,wname); 

thr=4; 

a0=1; 

n=7; 

edge_map = local_max_mode_new(cv1,ch1,thr,a0,n); 
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Exercise 

Analyze a chirp signal with wavelet transform in Matlab! At first generate the image, then 

make its FFT analysis, finally the wavelet analysis! 

Solution 

load hychirp 

plot(t,hychirp) 

grid on 

title('Signal') 

axis tight 

xlabel('Time (s)') 

ylabel('Amplitude') 
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sigLen = numel(hychirp); 

fchirp = fft(hychirp); 

fr = Fs*(0:1/Fs:1-1/Fs); 

plot(fr(1:sigLen/2),abs(fchirp(1:sigLen/2)),'x-') 

xlabel('Frequency (Hz)') 

ylabel('Amplitude') 

axis tight 

grid on 

xlim([0 200]) 

cwt(hychirp,Fs) 
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Exercise 

Create the time-frequency (STFT)  figure of the above chirp function! 

Solution 

helperPlotSpectrogram(hychirp,t,Fs,200) 

The STFT provides some information on both the timing and the frequencies at which a 

signal event occurs. However, choosing a window (segment) size is key. For time-frequency 

analysis using the STFT, choosing a shorter window size helps obtain good time resolution 

at the expense of frequency resolution. Conversely, choosing a larger window helps obtain 

good frequency resolution at the expense of time resolution. 

Once you pick a window size, it remains fixed for the entire analysis. If you can estimate the 

frequency components you are expecting in your signal, then you can use that information 

to pick a window size for the analysis. 

The instantaneous frequencies of the two chirps at their initial time points are 

approximately 5 Hz and 15 Hz. Use the helper function helperPlotSpectrogram to plot the 

spectrogram of the signal with a time window size of 200 milliseconds.  
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9th week 
 

9 MRA, Scalogram 
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A multiresolution analysis (MRA) or multiscale approximation (MSA) is the design method 
of most of the practically relevant discrete wavelet transforms (DWT) and the justification 
for the algorithm of the fast wavelet transform (FWT). 

It was introduced in this context in 1988/89 by Stephane Mallat and Yves Meyer and has 
predecessors in the microlocal analysis in the theory of differential equations (the ironing 
method) and the pyramid methods of image processing. 

Signals often consist of multiple physically meaningful components. Quite often, you want 
to study one or more of these components in isolation on the same time scale as the original 
data. Multiresolution analysis refers to breaking up a signal into components, which 
produce the original signal exactly when added back together. To be useful for data analysis, 
how the signal is decomposed is important. The components ideally decompose the 
variability of the data into physically meaningful and interpretable parts. The term 
multiresolution analysis is often associated with wavelets or wavelet packets, but there are 
non-wavelet techniques which also produce useful MRAs. 

Supposing certain stronger properties than merely the admissibility condition we can 
limit ourselves to the values 

𝑎  2𝑗 , 𝑏  𝑘 ∙ 2𝑗 ,     𝑗, 𝑘 ∈ ℤ. 
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This idea leads to the discrete wavelet transform which is closely related to the so-called 
multi-resolution analysis. 

For signals 𝑓 the following three operations 

(𝜏𝑎𝑓)(𝑥)  𝑓(𝑥  𝑎),   𝑎, 𝑥 ∈ ℝ 

(𝛿𝑠𝑓)(𝑥)  𝑓(𝑠 ∙ 𝑥) ,   𝑠, 𝑥 ∈ ℝ, 𝑠 > 0 

(𝐸1𝑓)(𝑥)  ∑𝑓(𝑥  𝑘)

𝑘∈ℤ

 ∑(𝜏𝑘𝑓)(𝑥)

𝑘∈ℤ

,    𝑥 ∈ ℝ 

will be used. 

The concept of multi-resolution is based on translation-invariant Riesz bases. A system 
{ 𝑘} 𝑘∈ℤ ⊂ 𝑋 is a Riesz basis of 𝑋 if for all 𝑥 ∈ 𝑋 there exists a unique (𝑐𝑘) ∈ ℓ2 such that 

𝑥  ∑ 𝑐𝑘 𝑘𝑘∈ℤ . 

It is important to note that all orthonormal bases are Riesz bases as well. 

Let { 𝑘} 𝑘∈ℤ  {𝜏𝑘 } 𝑘∈ℤ ⊂ 𝑋 be a Riesz basis with the generator function  . Then for all 
𝑛 ∈ ℤ 

 𝑘
𝑛(𝑥)  

1

√2𝑛
∙  (

1

2𝑛
∙ 𝑥 − 𝑘) ,     𝑥 ∈ ℝ, 𝑘 ∈ ℤ 
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is Riesz basis for 𝑋𝑛, furthermore, if { 𝑘} 𝑘∈ℤ is orthonormal, then { 𝑘
𝑛} 𝑘∈ℤ is orthonormal 

as well.  

A sequence of closed subspaces {𝑋𝑛} 𝑛∈ℤ ⊂ 𝑋 is called multi-resolution analysis of 𝑋 if 

1. 𝑋𝑛 ⊂ 𝑋𝑛−1, 𝑛 ∈ ℤ monotonicity property 

2. ⋃ 𝑋𝑛𝑛∈ℤ
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  𝑋  density property 

3. ⋂ 𝑋𝑛𝑛∈ℤ  {0}  separability property 

4. 𝑓 ∈ 𝑋𝑛    ⇔    𝛿2𝑓 ∈ 𝑋𝑛−1, 𝑛 ∈ ℤ scaling property 

5. 𝑋  is generated by a Riesz-basis given by  

 𝑘  𝜏𝑘 ,   𝑘 ∈ ℤ 

(The basis is invariant to integer translations). 

 

The scaling property characterizes the multi-resolution aspects: spaces 𝑋𝑗 are obtained by 

dyadic dilation or contraction of the functions of the single space 𝑋  through the 
assumptions 

(𝑥 → 𝑓(𝑥)) ∈ 𝑋𝑗   ⇔    (𝑥 → 𝑓(2 ∙ 𝑥)) ∈ 𝑋𝑗−1,     𝑗 ∈ ℤ. 

Property 5 states that there exists  ∈ 𝑋  such that { (𝑥 − 𝑘)}𝑘∈ℤ is a Riesz basis of 𝑋 . 

Function   is also called scaling function of the MRA. 

Let us denote the subspace generated by Riesz basis  𝑘
𝑛 as 
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𝑋𝑛
𝜑
 {∑ 𝑐𝑘 ∙  𝑘

𝑛
𝑘∈ℤ |(𝑐𝑘) ∈ ℓ2} 

Each multi-resolution analysis generates an approximation process. If 𝑃𝑛: 𝑋 → 𝑋𝑛, 𝑛 ∈ ℤ 
denote the othogonal projection of 𝑓 onto the closed subspace 𝑋𝑛 then    

𝑛→∞
‖𝑃𝑛𝑓 − 𝑓‖  0,

𝑓 ∈ 𝑋. 

Let ℳ  be the set of non-negative, even, integrable functions decreasing on [0,1[. 

It can be proved that if an MRA is generated by a function   majorated by an element of 
ℳ  then the equality  

∑ (𝑥 − 𝑘)

𝑘∈ℤ

 1,     𝑥 ∈ ℝ 

is equivalent with the density property. 

Functions with compact support on a topological space X are those whose closed support 
is a compact subset of X. If X is the real line, or n-dimensional Euclidean space, then a 
function has compact support if and only if it has bounded support, since a subset of {R} is 
compact if and only if it is closed and bounded. 

Theorem: The following three statements are equivalent: 

i) { 𝑘
𝑛} 𝑘∈ℤ is a Riesz basis of 𝑋𝑛 for all 𝑛 ∈ ℤ. 

ii) { 𝑘
  𝜏𝑘 } 𝑘∈ℤ is a Riesz basis of 𝑋 . 
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iii) There exist real numbers 0 < 𝑚 ≤ 𝑀 < ∞ such that 𝑚 ≤ √𝐸1(| ̂|
2) ≤ 𝑀. 

Let ℛ  { ∈ 𝑋 |𝑚 ≤ √𝐸1(| ̂|
2) ≤ 𝑀}. According to the previous theorem ℛ contains the 

functions  ∈ 𝑋 for which system { 𝑘
𝑛} 𝑘∈ℤ is a Riesz basis of 𝑋𝑛 for all 𝑛 ∈ ℤ. 

Theorem: Let  ∈ ℛ. System {𝜏𝑘 } 𝑘∈ℤ is orthonormal if and only if 𝐸1(| ̂|
2)  1. 

Let  ∈ ℛ and let 𝑋𝑛
𝜑

 denote the Riesz basis generated by { 𝑘
𝑛} 𝑘∈ℤ, 𝑛 ∈ ℤ. 

Theorem: The monotonicity property 𝑋𝑛 ⊂ 𝑋𝑛−1, 𝑛 ∈ ℤ is equivalent with the scaling 
equation 

 ̂(2𝑥)  𝛼(𝑥) ∙  ̂(𝑥),     𝑥 ∈ ℝ,  

where 𝛼 ∈ 𝑋 is a suitable 1-periodic function. 𝛼 is called the low-pass filter belonging to  . 

Furthermore, the scaling equation is equivalent with the equality 

1

2
∙  (

1

2
∙ 𝑥)  ∑𝑎𝑘 ∙  (𝑥  𝑘)

𝑘∈ℤ

,     𝑥 ∈ ℝ 

where (𝑎𝑘) is the sequence of the Fourier coefficients of 𝛼. 

Let ℳ denote the set of functions  ∈ ℛ having majorant in ℳ  and satisfying condition 
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 ̂(0)  ∫  ( )

ℝ

𝑑  1. 

From function   generating MRA on orthonormal wavelet basis {𝑋𝑛
𝜑
}
 𝑛∈ℤ

 of 𝑋 can be 

constructed as follows. 

In the following we suppose that the normality conditions 

𝐸1(| ̂|
2)  1,     𝐸1 (|�̂�|

2
)  1 

hold, that is, systems { 𝑘
𝑛} 𝑘∈ℤ and {𝜓𝑘

𝑛} 𝑘∈ℤ are orthonormal for any 𝑛 ∈ ℤ. 

It can be proved that there exists a 1-periodic filter 𝛽 ∈ 𝑋 such that for 𝜓 defined by 

𝛿2(�̂�)  𝛽 ∙  ̂ 

we have the orthogonal decomposition 𝑋 
𝜑
 𝑋1

𝜑
⨁𝑋1

𝜓
. 

Consequently, for all 𝑛 ∈ ℤ we have 𝑋𝑛
𝜑
 𝑋𝑛+1

𝜑
⨁𝑋𝑛+1

𝜓
, furthermore 

𝑋𝑗
𝜑
 𝑋𝑘

𝜑
⨁(

𝑗  1
⨁

𝑖  𝑘
𝑋𝑖
𝜓
) ,   𝑗 < 𝑘, 
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𝑋𝑗
𝜑
 

∞
⨁

𝑖  𝑗  1
𝑋𝑖
𝜓

 

𝑋  𝑋𝑗
𝜑
⨁(

𝑗
⨁

𝑖  −∞
𝑋𝑖
𝜓
) 

𝑋  
∞
⨁

𝑖  −∞
𝑋𝑖
𝜓

 

This result shows that system {𝜓𝑘
𝑛} 𝑘∈ℤ, where functions 

𝜓𝑘
𝑛(𝑥)  

1

√2𝑛
∙ 𝜓 (

1

2𝑛
∙ 𝑥 − 𝑘) ,     𝑥 ∈ ℝ, 𝑘 ∈ ℤ 

are generated by function 𝜓 satisfying 𝐸1(| ̂|
2)  1, 𝐸1 (|�̂�|

2
)  1 and 𝑋 

𝜑
 𝑋1

𝜑
⨁𝑋1

𝜓
 is 

orthonormal, that is 〈𝜓𝑘
𝑛, 𝜓𝑙

𝑚〉  𝛿𝑘𝑙 ∙ 𝛿𝑛𝑚,     𝑘, 𝑙, 𝑛,𝑚 ∈ ℤ. 𝜓 is called the mother wavelet of 
the MRA. 

Subspaces 𝑋𝑗
𝜑
, 𝑘 ∈ ℤ are called approximation spaces, while spaces 𝑋𝑗

𝜓
, 𝑘 ∈ ℤ are called 

detail spaces. 
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The equality 𝑋𝑛
𝜑
 𝑋𝑛+1

𝜑
⨁𝑋𝑛+1

𝜓
 says that an element of the approximation space of level 𝑛 

is decomposed into an approximation at level 𝑛  1, which is less accurate, and a detail at 
level 𝑛  1. 

According to the equality 𝑋  
∞
⨁

𝑖  −∞
𝑋𝑖
𝜓

 any signal is the sum of all its details, namely its 

orthogonal projections onto the spaces 𝑋𝑗
𝜓

. 

The wavelet coefficients of a signal f are provided by 

𝛼𝑘,𝑛  𝐶𝑓(𝑘, 𝑛)  ∫ 𝑓(𝑥) ∙ 𝜓𝑘
𝑛(𝑥)

ℝ

𝑑𝑥,     𝑘, 𝑛 ∈ ℤ 

Considering the decomposition 𝑋  𝑋𝑗
𝜑
⨁(

𝑗
⨁

𝑖  −∞
𝑋𝑖
𝜓
) the orthonormal system 

{ 𝑘
 , 𝜓𝑘

𝑛}
 𝑘,𝑛∈ℤ,𝑛< 

 

is used instead of {𝜓𝑘
𝑛} 𝑘∈ℤ. 

 

Theorem: If the continuously differentiable 1-periodic function α∈X satisfies 
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𝛼(0)  1,   |𝛼(𝑥)|2  |𝛼(𝑥)  
1

2
|
2

 1, 𝑥 ∈ ℝ 

and 

|𝛼(𝑥)| > 0,     𝑖𝑓    |𝑥| ≤
1

4
 

then function   defined by  ̂  𝐴, where 

𝐴(𝑥)     
𝑚→∞

∏𝛼(
1

2𝑛
∙ 𝑥)

𝑚

𝑛=1

 

generates an MRA of X. 

Wavelets are organized using two parameters time and scale. Time k makes it possible to 
translate the forms for a given level; scale 2^j makes it possible to pass from a level j to 
the immediately lower level in the underlying tree. 

In the first column we find the dyadic dilates of the scaling function φ and in the second 
column, those of the wavelet ψ. 
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The functions in the first column are used for calculating the coefficients of approximation 

𝛽𝑘,𝑛  ∫ 𝑓(𝑥) ∙ 𝜓𝑘
𝑛(𝑥)

ℝ

𝑑𝑥, 

which define local averages of the signal 𝑓(𝑥). 

The signal 
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𝐴𝑗(𝑥)  ∑𝛽𝑗,𝑘 ∙  𝑘
𝑛(𝑥)

𝑘∈ℤ

 

is an approximation. 

The functions in the second column are associated with the calculation of wavelet 
coefficients 

𝛼𝑘,𝑛  ∫ 𝑓( ) ∙ 𝜓𝑘
𝑛(𝑥)

ℝ

𝑑𝑥,     𝑘, 𝑛 ∈ ℤ 

which relate to the differences between two successive local averages. These are the 
details of the form: 

𝐷𝑗(𝑥)  ∑𝛼𝑗,𝑘 ∙ 𝜓𝑘
𝑛(𝑥)

𝑘∈ℤ

 

To present certain approximations and details we use the so-called wavelet tree 
illustrated in figure for a signal 𝑠. 
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At the root of a we find the signal. The first column in the figure yields three approximations, 

from the finest 𝐴1 to the coarsest 𝐴3. The differences between two successive 

approximations are captured in the details denoted 𝐷1 to 𝐷3. More precisely, we have 𝐷1  

𝑠 − 𝐴1 , 𝐷2  𝐴1 − 𝐴2 and, thus, 𝑠  𝐴2  𝐷2  𝐷1. 
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This representation help us to understand the basic relations between approximations and 

details, for instance 𝐴𝑗−1  𝐴𝑗  𝐷𝑗,  𝐴𝑗  ∑ 𝐷𝑖𝑖>𝑗  and 

𝑠  𝐴𝑗  ∑ 𝐷𝑖𝑖≤𝑗 . 

The following theorem says that from any scaling function of a MRA a mother wavelet of a 

complete orthonormal wavelet system can be constructed. 

Theorem: Suppose that for  ∈ 𝑋 𝐸1(| ̂|
2)  1 and 𝛿2 ̂  𝛼 ∙  ̂ hold, and define functions 

𝛽 and 𝜓 as 

𝛽  𝜖 ∙ 𝜏1
2

(𝛼∗),     𝛿2�̂�  𝛽 ∙  ̂. 

Then {𝑋𝑛
𝜑
}
 𝑛∈ℤ

 is an MRA of 𝑋 and {𝜓𝑘
𝑛}𝑘,𝑛∈ℤ complete orthonormal system. 

The Fourier coefficients of the 1-periodic function 𝛽 ∈ 𝑋 can be expressed by the Fourier 

coefficients of 𝛼, namely if 𝛼  ∑ 𝑎𝑘 ∙ 𝜖𝑘𝑘∈ℤ , then 𝛽  ∑ 𝛼1−𝑘
∗ ∙ 𝜖𝑘𝑘∈ℤ . 
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Wavelets with compact support 

In the applications the MRAs are used first of all whose generator functions has compact 

support. The filters belonging to these generator functions are trigonometric polynomials 

[81]. 

Filter 𝛼 can be found in the form 𝛼  (
1+𝜖−1

2
)
𝑁
∙ 𝑇, where 𝑇 is a trigonometric polynomial, 

and additionally, 𝛼(0)  1 and |𝛼(𝑥)|2  |𝛼 (𝑥  
1

2
)|
2
 1, 𝑥 ∈ ℝ hold. Then 

|𝛼(𝑥)|2     2𝑁(𝜋𝑥) ∙ |𝑇(𝑥)|2,     𝑥 ∈ ℝ 

where |𝑇|2 a trigonometric polynomial. We can suppose that |𝑇|2 is an even function. Then 

|𝑇(𝑥)|2  𝑃(   2𝜋𝑥),     𝑥 ∈ ℝ 

where 𝑃 is an algebraic polynomial, and using    2𝜋𝑥  1 − 2    2 𝜋𝑥 , 𝑥 ∈ ℝ we have 

|𝑇(𝑥)|2  𝑄(   2 𝜋𝑥),     𝑥 ∈ ℝ 

where 𝑄(𝑥)  𝑃(1 − 2𝑥), 𝑥 ∈ ℝ. 

Based on the formulas above we have to find the solutions of equation 

𝛼(0)  1, |𝛼(𝑥)|2  |𝛼 (𝑥  
1

2
)|
2

 1, 𝑥 ∈ ℝ 

in the form 

|𝛼(𝑥)|2     2𝑁(𝜋𝑥) ∙ 𝑄(   2 𝜋𝑥),     𝑥 ∈ ℝ 

Introducing the notation 𝑦     2 𝜋𝑥 our equation is equivalent with equation 
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(1 − 𝑦)𝑁 ∙ 𝑄(𝑦)  𝑦𝑁 ∙ 𝑄(1 − 𝑦)  1,     0 ≤ 𝑦 ≤ 1 

where 𝑄 is an algebraic polynomial. 

Its solutions are 

𝑄𝑁(𝑦)  ∑ (
𝑁  𝑘 − 1

𝑘
) ∙ 𝑦𝑘

𝑁−1

𝑘= 

,     𝑦 ∈ ℝ 

If 𝑅 is a polynomial for which 𝑅(𝑦)  𝑅(1 − 𝑦)  0, 𝑦 ∈ ℝ then (non-negative) 

polynomials 

𝑄(𝑦)  𝑄𝑁(𝑦)  𝑦𝑁 ∙ 𝑅(𝑦),     𝑦 ∈ ℝ 

provide functions 𝛼 in the form 

|𝛼(𝑥)|2     2𝑁(𝜋𝑥) ∙ 𝑄(   2 𝜋𝑥),   𝑥 ∈ ℝ. 

Calculating 𝑇 we have the filter 𝛼. 

A scalogram is the absolute value of the continuous wavelet transform coefficients of a 

signal. 

The empirical mode decomposition (EMD) is a data-adaptive multiresolution technique. 

EMD recursively extracts different resolutions from the data without the use of fixed 

functions or filters. EMD regards a signal as consisting of a fast oscillation superimposed on 

a slower one. After the fast oscillation is extracted, the process treats the remaining slower 
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component as the new signal and again regards it as a fast oscillation superimposed on a 

slower one. The process continues until some stopping criterion is reached. 

 

 
https://www.researchgate.net/figure/Continuous-wavelet-transform-scalogram-on-patients-self-mood-rating-Horizontal-axis_fig1_323455258 
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9th week – Questions 
 

Question 

What is the multiresolution analysis (MRA)? 

Answer 

A multiresolution analysis (MRA) or multiscale approximation (MSA) is the design method 

of most of the practically relevant discrete wavelet transforms (DWT) and the justification 

for the algorithm of the fast wavelet transform (FWT). 

It was introduced in this context in 1988/89 by Stephane Mallat and Yves Meyer and has 

predecessors in the microlocal analysis in the theory of differential equations (the ironing 

method) and the pyramid methods of image processing. 

Wavelets are organized using two parameters time and scale. Time k makes it possible to 

translate the forms for a given level; scale 2^j makes it possible to pass from a level j to the 

immediately lower level in the underlying tree. 

Signals often consist of multiple physically meaningful components. Quite often, you want 

to study one or more of these components in isolation on the same time scale as the original 
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data. Multiresolution analysis refers to breaking up a signal into components, which 

produce the original signal exactly when added back together. To be useful for data analysis, 

how the signal is decomposed is important. The components ideally decompose the 

variability of the data into physically meaningful and interpretable parts. The term 

multiresolution analysis is often associated with wavelets or wavelet packets, but there are 

non-wavelet techniques which also produce useful MRAs. 
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Question 

What is the compact support of a function regarding multiresolution analysis (MRA)? 

Answer 

Functions with compact support on a topological space X are those whose closed support 
is a compact subset of X. If X is the real line, or n-dimensional Euclidean space, then a 
function has compact support if and only if it has bounded support, since a subset of {R} is 
compact if and only if it is closed and bounded. 
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Question 

Describe the properties of the multiresolution analysis! 

Answer 

1. 𝑋𝑛 ⊂ 𝑋𝑛−1, 𝑛 ∈ ℤ monotonicity property 

2. ⋃ 𝑋𝑛𝑛∈ℤ
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  𝑋  density property 

3. ⋂ 𝑋𝑛𝑛∈ℤ  {0}  separability property 

4. 𝑓 ∈ 𝑋𝑛    ⇔    𝛿2𝑓 ∈ 𝑋𝑛−1, 𝑛 ∈ ℤ scaling property 

5. 𝑋  is generated by a Riesz-basis given by  

 𝑘  𝜏𝑘 ,   𝑘 ∈ ℤ 

(The basis is invariant to integer translations). 
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9th week – Exercises 
 

Exercise 

Generate a signal in Matlab and create its FFT diagram and its scalogram by wavelet 

transform! 

Solution 

A possible solution is: 

As a motivating example of the insights you can gain from an MRA, consider the following 

synthetic signal. The signal is sampled at 1000 Hz for one second. 

Matlab code: 

Fs = 1e3; 

t = 0:1/Fs:1-1/Fs; 

comp1 = cos(2*pi*200*t).*(t>0.7); 

comp2 = cos(2*pi*60*t).*(t>=0.1 & t<0.3); 
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trend = sin(2*pi*1/2*t); 

rng default 

wgnNoise = 0.4*randn(size(t)); 

x = comp1+comp2+trend+wgnNoise; 

plot(t,x) 

xlabel('Seconds') 

ylabel('Amplitude') 

title('Synthetic Signal') 
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The signal is explicitly composed of three main components: a time-localized oscillation 

with a frequency of 60 cycles/second, a time-localized oscillation with a frequency of 200 

cycles/second, and a trend term. The trend term here is also sinusoidal but has a 

frequency of 1/2 cycle per second, so it completes only 1/2 cycle in the one-second 

interval. The 60 cycles/second or 60 Hz oscillation occurs between 0.1 and 0.3 seconds, 

while the 200 Hz oscillation occurs between 0.7 and 1 second. 
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To generate its FFT spectrum the Matlab code is: 

xdft = fft(x); 

N = numel(x); 

xdft = xdft(1:numel(xdft)/2+1); 

freq = 0:Fs/N:Fs/2; 

plot(freq,20*log10(abs(xdft))) 

xlabel('Cycles/second') 

ylabel('dB') 

grid on 
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From the frequency analysis, it is much easier for us to discern the frequencies of the 

oscillatory components, but we have lost their time-localized nature. It is also difficult to 

visualize the trend in this view. 

To gain some simultaneous time and frequency information, we can use a time-frequency 

analysis technique like the continuous wavelet transform (cwt). 
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The time-frequency view provides useful information, but in many situations you would 

like to separate out components of the signal in time and examine them individually. Ideally, 

you want this information to be available on the same time scale as the original data. 
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Multiresolution analysis accomplishes this. In fact, a useful way to think about 

multiresolution analysis is that it provides a way of avoiding the need for time-frequency 

analysis while allowing you to work directly in the time domain. 
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Exercise 

Create the wavelet MRA of the signal above in the previous exercise! 

Solution 

Real-world signals are a mixture of different components. Often you are only interested in 

a subset of these components. Multiresolution analysis allows you to narrow your analysis 

by separating the signal into components at different resolutions. 

Extracting signal components at different resolutions amounts to decomposing variations 

in the data on different time scales, or equivalently in different frequency bands (different 

rates of oscillation). Accordingly, you can visualize signal variability at different scales, or 

frequency bands simultaneously. 

Analyze and plot the synthetic signal using a wavelet MRA. The signal is analyzed at eight 

resolutions or levels. 

Matlab code: 

mra = modwtmra(modwt(x,8)); 

helperMRAPlot(x,mra,t,'wavelet','Wavelet MRA',[2 3 4 9]) 
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Exercise 

Create the EMD of the signal above! Plot the EMD as well! 

Solution 

While EMD does not use fixed functions like wavelets to extract information, the EMD 

approach is conceptually very similar to the wavelet method of separating the signal into 

details and approximations and then separating the approximation again into details and 

an approximation. The MRA components in EMD are referred to as intrinsic mode 

functions (IMF).  

Matlab code: 

[imf_emd,resid_emd] = emd(x); 

helperMRAPlot(x,imf_emd,t,'emd','Empirical Mode Decomposition',[1 2 3 6]) 
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While the number of MRA components is different, the EMD and wavelet MRAs produce a 

similar picture of the signal. This is not accidental.  

In the EMD decomposition, the high-frequency oscillation is localized to the first intrinsic 

mode function (IMF 1). The lower frequency oscillation is localized largely to IMF 2, but you 

can see some effect also in IMF 3. The trend component in IMF 6 is very similar to the trend 

component extracted by the wavelet technique. 
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10th week 
 

 

10 Wavelet Transforms in Machine Fault Diagnostics 
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Wavelet design procedure 

Although, the user-ready wavelets are effective in many cases, the also the design of new 

wavelets meeting certain criteria is necessary in some cases for the more efficient diagnosis 

in specific cases. A natural requirement is to find wavelet functions having special shape, 

for instance being ‘similar’ to a given transient in the analyzed signal.  

Some direct calculation algorithms are available in the literature, Chapa and Rao introduce 

an algorithm for designing a mother wavelet 𝜓 such that it matches a signal of interest and 

wavelets 𝜓𝑘
𝑛  

1

√2𝑛
𝜓 (

1

2𝑛
𝑥 − 𝑘) form an orthonormal Riesz-basis of 𝑋. Supposing band-

limited spectrum of the scaling and wavelet functions they give the scaling function by 

discrete matching procedure from the discrete spectrum of the desired transient appearing 

in the signal of interest.  

Suppose that we have a sample 

𝐖  {|𝐹 (𝑘 ∙
2𝜋
2ℓ
)|
2

|𝑘  [
2ℓ

3
] , … , [

2ℓ+2

3
]} 

where 𝐹 is the spectrum of the signal. 

Let us denote the matched wavelet spectrum as Ψ. Through a least squares optimization 

process, Theorem 5 in [28] gives values 
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𝐘  {|Ψ(𝑘 ∙
2𝜋

2ℓ
)|
2

: 𝑘  [
2𝑙

3
] , … , [

2𝑙+2

3
]} 

using the error function 

𝐸(𝑎, 𝐘)  
(𝐖 − 𝑎𝐘)𝑇 ∙ (𝐖 − 𝑎𝐘) 

𝐖𝑇𝐖
. 

 

According to the theorem, the optimal wavelet power spectrum is given by 

𝐘  
1

𝑎
𝐖 𝐀𝑇(𝐀𝐀𝑇)−𝟏 (𝟏 −

1

𝑎
𝐀𝐖) 

where 𝐀 is an 𝐿 × 2𝑙  matrix and 

𝑎  
𝟏𝑇(𝐀𝐀𝑇)−𝟏𝐀𝐖 

𝟏𝑇(𝐀𝐀𝑇)−𝟏𝟏
. 

Theorem 4 in [28] says that, in an orthonormal MRA, values of |Φ| can be calculated from 

|Ψ| values using the equality 

|Φ (
𝑘𝜋

2ℓ
)|
2

 ∑|Ψ(
2𝑘𝜋

2𝑖
)|
2ℓ

𝑖= 

         𝑘 ≠ 0. 

The necessary and sufficient condition on 𝑌(𝑘)  |Ψ(𝑘 ∙
2𝜋

2ℓ
)|
2
, 𝑘 ∈ ℤ to guarantee that 

|Φ(𝑘)|, provided by Theorem 4, generates an orthonormal MRA is 
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∑ ∑ 𝑌(
2ℓ

2𝑖
∙ (𝑘  2ℓ+1 ∙ 𝑚))

∞

𝑚=−∞

ℓ

𝑖= 

 1 

where 

2ℓ−1

3
<
2ℓ

2𝑖
∙ (𝑘  2ℓ+1 ∙ 𝑚) <

2ℓ+2

3
 

To determine the specific set of constraint equations, first expand the summation over 𝑖. 

Condition ∑ ∑ 𝑌 (
2ℓ

2𝑖
∙ (𝑘  2ℓ+1 ∙ 𝑚))∞

𝑚=−∞
ℓ
𝑖=  1 generates a set of 𝐿 linear equality 

constraints in 𝑌(𝑘) of the form 

∑𝛼𝑖𝑘 ∙ 𝑌(𝑘)

𝐿

𝑖=1

 1             𝑘  [
2ℓ

3
] , … , [

2ℓ+2

3
] 

where 𝛼𝑖𝑘 ∈ {0,1,2}. The matrix form of the condition is 

𝐀𝐘  𝟏 

where 𝐀  (𝛼𝑖𝑘) is an 𝐿 × 2𝑙  matrix and 𝟏 is a 𝐿 × 1 vector given by 𝟏  (1,… ,1). 

 

Let θΦ( ), θΨ( ), θH( ), and θF( ) be the phase functions of Φ, Ψ, 𝐻 and 𝐹, respectively, 

where 𝐻 is the spectrum of sequence of coefficients (ℎ𝑛) in equality 



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 349 

 (𝑥)  2 ∙ ∑ ℎ𝑘 ∙  (2𝑥 − 𝑘)

∞

𝑘=−∞

. 

Let us introduce functions 

ΓΦ( )  ΛΦ( )  
1

2
,   ΓΨ( )  ΛΨ( )  

1

2
,   d ΓF( )  ΛF( )  

1

2
 

where 

ΛΦ( )  
dθΦ( )

d 
,     ΛΨ( )  

dθΨ( )

d 
,     λ( )  

dθH( )

d 
 

are the so-called group delays of Φ, Ψ, and  , respectively. 

A least squares optimization procedure is presented in [81] for matching ΓΨ to ΓF which 

provides ΛΦ and ΛΨ as well. In calculations the periodic function 𝜆 has a central role, its 

period 𝜆𝑇 is modelled with an 𝑅-degree polynomial 𝜆𝑇( )  ∑ 𝑐𝑟 ∙  
2𝑟𝑅/2

𝑟= ,  ∈ [−𝜋, 𝜋] 

having only even exponents.  

The discrete form for 𝜆 can now be written in vector notation 

𝝀  𝐁𝒄 

where 𝛌 is an 𝑁 × 1 vector, 𝐜 is an (
𝑅

2
 1) × 1 vector, and 𝐁 is an 𝑁 × (

𝑅

2
 1) matrix whose 

elements depend on the parameter settings (sampling time 𝑇 and sample size 𝑁) used when 

sampling 𝐹. Using this form of 𝝀 we have 
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𝚪Ψ  𝐃Ψ𝐜 

where matrix 𝐃Ψ can be calculated from 𝐁. 

𝚪Ψ matching 𝚪F can be obtained minimizing the error function 

𝛾  ∑ (𝚪F(𝑛) − 𝚪Ψ(𝑛))
2

𝑁/2−1

𝑛=−𝑁/2

 

in a least squares sense. 

To consider the passband for spectra, the error function needs to be normalized by the 

weighting function Ω(𝑛)  
𝑌(𝑛)

∑𝑌(𝑛)
, where 𝑌(𝑛) are the elements of 𝐘 provided by the 

amplitude matching algorithm: 

𝛾Ω  ∑ (Ω(𝑛) ∙ (𝚪F(𝑛) − 𝚪Ψ(𝑛)))
2

𝑁
2
−1

𝑛=−
𝑁
2

 

The vector �̃� minimizing 𝛾 can be given as 

�̃�  (�̅�Ψ
𝑇
�̅�Ψ)

−1
�̅�Ψ

𝑇
�̅�F, 

where the elements of �̅�F are the non-zero values of {Ω(𝑛) ∙ 𝚪F(𝑛)} and the elements of �̅�Ψ 

are the corresponding non-zero values of {Ω(𝑛) ∙ 𝑑𝑛,𝑟}. 
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Using �̃� functions 𝛌, 𝚲Ψ and 𝚲Φ and then the discrete phases of Ψ and Φ can be calculated.  

Combining these discrete phases with the magnitudes we get the estimate of Ψ and Φ which 

satisfy all conditions for an orthonormal MRA. 

The impulse responses, ℎ and 𝑔, corresponding to the matched wavelet and its scaling 

function can be found using Φ( )  𝐻 (
𝜔

2
)Φ(

𝜔

2
) ,Ψ( )  𝐺 (

𝜔

2
)Φ(

𝜔

2
) and the inverse 

Fourier transform.  
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Wavelet selection with Energy-to-Shannon Entropy Criteria 

 

The Energy-to-Shannon Entropy Criteria is used to rank wavelets on the basis of 

scalograms. The Energy-to-Shannon Entropy ratio is a combination of the energy content 

𝐸(𝑛)  ∑|𝐶𝑛,𝑖|
2

𝑚

𝑖

 

and the Shannon entropy 

𝑆(𝑛)  −∑𝑝𝑖   2𝑝𝑖

𝑚

𝑖=1

 

related to the wavelet coefficients 𝐶𝑛,𝑖 , where 𝑚 is the number of the wavelet coefficients 

of 𝑛-th scale and (𝑝1, … , 𝑝𝑛) is the energy distribution of the wavelet coefficients defined by 

𝑝𝑖  |𝐶𝑛,𝑖|
2
/𝐸(𝑛). 

The indicator 

𝜉(𝑛)  𝐸(𝑛)/𝑆(𝑛) 

is used to choose the best wavelet for diagnosis of a special fault. [58] 
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Fault size estimation  

Analysis of the entry point and the exit point are necessary for fault size estimation. Figure 

below represents the entry and exit events when the roller contacts the edges and the 

bottom of the fault. Ball stress varies during the process, however in this experiment not 

the mechanical stress is measured but the vibration acceleration value which is 

proportional with the stress according the Newton’s second law and Hooke’s law. Linear 

and isotropic material model is supposed with Poisson values of 0.33 of the 100Cr6 

material. Bearing behaves as a mass-spring-damper system with weak damping which 

creates transient vibration waves when hit the fault. 
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At point 𝐴, the roller strikes the rectangular shape grinding defect with high impact which 

results in re-stressing and high impulse in signal. After this event the roller remains in 

contact with the defect for some time. When the roller comes in contact with the point 𝐵 it 

again generates high amplitude in the signal and beyond point B progressive decrease in 

amplitude of signal is observed due to elastic damping of the bearing element.  

Fault size is calculated by the time “distance” between points A and C. This method is very 

useful because the defects width of the bearing can be determined only from the vibration 
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signature. Bearing defects generate transient impulses in the vibration signal when the 

rollers pass through the defects. The bearing fault frequencies can be calculated by 

numerical way: bearing pass frequency of outer race (BPFO), bearing pass frequency of 

inner race (BPFI), fundamental train frequency (FTF), ball spin frequency (BSF). For 

instance, FTF can be calculated as: 

𝐹𝑇𝐹  
𝑓𝑟
2
(1 −

𝑑

𝐷
𝑐𝑜𝑠Φ) 

where 𝑓𝑟 is the rotational frequency of the shaft, Φ is the contact angle, 𝑑 is the inner ring 

diameter, 𝐷 is the outer ring diameter. The defect can be calculated, where 𝐷𝑂𝐼 is the outer 

ring diameter on the raceways, 𝛥  is the time duration between the contact points of the 

bearing elements. 



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 356 

 
 

For fault size estimation fault frequencies are calculated which in this experiment are 

𝐵𝑃𝐹𝑂  206.18 𝐻𝑧, 𝐵𝑃𝐹𝐼  287.15 𝐻𝑧, 𝐹𝑇𝐹  12.88 𝐻𝑧, 𝐵𝑆𝐹  89.96 𝐻𝑧 in this 

experiment at 1800 1/min: 

 

𝐿𝑂𝐷  𝜋 ∙ Δ ∙ 𝐷𝑂𝐼 ∙ 𝐹𝑇𝐹  1713.74 ∙ Δ  
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Nine different wavelets are compared to reveal the grinding faults. According to the 

literature overview it was found that these wavelets were efficient for bearing fault analysis 

in general bearing fault diagnostics. Values of the Energy-to-Shannon Entropy ratios are in 

Table. 

 

E/S OR1 OR2 OR3 OR4 Mean 

Sym2 59.96 80.20 100.87 109.16 87.55 

Sym5 65.58 95.37 117.07 119.92 99.48 

Sym8 82.81 113.77 120.16 118.48 108.81 

db02 60.91 81.09 101.12 113.46 89.14 

db06 71.74 89.02 120.42 117.40 99.65 

db10 77.76 104.69 120.34 120.45 105.81 

db14 85.02 120.03 121.37 123.78 112.55 

Meyer 92.31 160.31 126.20 105.70 121.13 

Morlet 113.15 194.15 142.18 138.14 146.90 

 

It is observed that Morlet wavelet provided the highest value that indicates to be the most 

efficient wavelet from the nine wavelets for both fault detection and fault size estimation of 

the special grinding defect. 
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To determine the defect size MRA is applied by filter banks which is a design method of 

most of the practically relevant discrete wavelet transforms. 

In the case of No. 30205 tapered roller test bearing BPFO is 206.18 𝐻𝑧. Down to 3rd level, 

where transient impulse is analysed for defect width estimation, wavelet band is 1.25 𝑘𝐻𝑧 

which is more than 3 times bigger than BPFO. 

The raw signal is too noisy to detect entry and exit points of the defect but wavelet 

decomposition makes it possible to analyse the entry and exit events. Using Energy-to-

Shannon Entropy Criteria we obtain the best wavelet to determine the fault size from the 

vibration signature. 

 

 
 

https://en.wikipedia.org/wiki/Discrete_wavelet_transform
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Figure presents the time-domain signal of outer race defect of 0.6311 𝑚𝑚. The highest 

periodic transient impulse related energy content of the burst occurs at 2.09 𝑘𝐻𝑧 that 

causes 5 𝑚𝑠 rate of periodicity which is equal to 206.18 𝐻𝑧 BPFO frequency. The spectrum 

was determined in all outer rings with different fault sizes and they showed similar manner 

around the peak at 2.09 𝑘𝐻𝑧 as it can be seen in Figure 25. 

Multiresolution analysis is made in order to obtain precise frequency analysis. Figure 26 

presents the wavelet decomposition tree. Higher decomposition is not necessary because 

it might not reveal any further information of the signal. Regarding the BPFO frequency 

analysis was made at 3rd detail level (cD3) from 1.25 𝑘𝐻𝑧 to 2.5 𝑘𝐻𝑧.  
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Figure below illustrates the measured transient signal. In the experiment 20 impulses were 

measured and the average time values were determined between the entry and exit points. 
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There is variation in data points as each roller cross over the defect. Average data points 

are calculated for estimating the time taken by roller to pass over the grinding defect. Figure 

represents the scalogram by Morlet wavelet which provided the highest wavelet coefficient 

values. 
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10th week – Questions 
 

Question 

What is the purpose of the wavelet design in machine fault diagnostics? 

Answer 

Its purpose is to identify the short time transient faults of machine parts such as bearings, 

gears, shafts etc. 

A natural requirement is to find wavelet functions having special shape, for instance being 

‘similar’ to a given transient in the analyzed signal.  

Some direct calculation algorithms are available in the literature, for instance in [28] 

Chapa and Rao introduce an algorithm for designing a mother wavelet 𝜓 such that it 

matches a signal of interest and wavelets 𝜓𝑘
𝑛  

1

√2𝑛
𝜓 (

1

2𝑛
𝑥 − 𝑘) form an orthonormal Riesz-

basis of 𝑋. Supposing band-limited spectrum of the scaling and wavelet functions they give 

the scaling function by discrete matching procedure from the discrete spectrum of the 

desired transient appearing in the 

signal of interest. 
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Question 

How you can identify the bearing fault frequencies in the spectrum? 

Answer 

Using FFT analysis after MRA analysis is a method to produce the spectrum of a machine 

part then to make a fault analysis. 

Here is an example: 

The raw signal is too noisy to detect entry and exit points of the defect but wavelet 

decomposition makes it possible to analyse the entry and exit events. Using Energy-to-

Shannon Entropy Criteria we obtain the best wavelet to determine the fault size from the 

vibration signature. 
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Figure presents the time-domain signal of outer race defect of 0.6311 𝑚𝑚. The highest 

periodic transient impulse related energy content of the burst occurs at 2.09 𝑘𝐻𝑧 that 

causes 5 𝑚𝑠 rate of periodicity which is equal to 206.18 𝐻𝑧 BPFO frequency. The spectrum 

was determined in all outer rings with different fault sizes and they showed similar manner 

around the peak at 2.09 𝑘𝐻𝑧 as it can be seen in Figure 25. 

Multiresolution analysis is made in order to obtain precise frequency analysis. Figure 26 

presents the wavelet decomposition tree. Higher decomposition is not necessary because 

it might not reveal any further information of the signal. Regarding the BPFO frequency 

analysis was made at 3rd detail level (cD3) from 1.25 𝑘𝐻𝑧 to 2.5 𝑘𝐻𝑧.  
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Question 

What is the method of selecting the most efficient wavelet for the fault diagnostics? 

Answer 

The Energy-to-Entropy ratio is an efficient number to find the best wavelet for a certain 

purpose. The higher the E/S number is, the more efficient the wavelet to make proper 

feature extraction of the fault signal. The Energy-to-Shannon Entropy Criteria is used to 

rank wavelets on the basis of scalograms. The Energy-to-Shannon Entropy ratio is a 

combination of the energy content 

𝐸(𝑛)  ∑|𝐶𝑛,𝑖|
2

𝑚

𝑖

 

𝑆(𝑛)  −∑𝑝𝑖   2𝑝𝑖

𝑚

𝑖=1

 

related to the wavelet coefficients 𝐶𝑛,𝑖 , where 𝑚 is the number of the wavelet coefficients 

of 𝑛-th scale and (𝑝1, … , 𝑝𝑛) is the energy distribution of the wavelet coefficients defined by 

𝑝𝑖  |𝐶𝑛,𝑖|
2
/𝐸(𝑛). 

The indicator 
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𝜉(𝑛)  𝐸(𝑛)/𝑆(𝑛) 

is used to choose the best wavelet for diagnosis of a special fault. 
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10th week – Exercises 
 

Exercise 

Calculate the Shannon entropy of a signal with Matlab code! 

Solution 

E = wentropy(X,T,P) returns the entropy where P is a parameter depending on T. 

E = wentropy(X,T,0) is equivalent to E = wentropy(X,T). 

Possible solution: 

rng default 

x = randn(1,200); 

Compute the Shannon entropy of x. 

e = wentropy(x,'shannon') 

e = -224.5551 

Compute the log energy entropy of x. 

https://www.mathworks.com/help/wavelet/ref/wentropy.html#mw_214b1241-daa4-4afe-97fb-62ce57d7573e
https://www.mathworks.com/help/wavelet/ref/wentropy.html#mw_37644985-cb21-49a4-b007-832c3ff38790
https://www.mathworks.com/help/wavelet/ref/wentropy.html#mw_39d6dc86-1b6a-47a8-96bb-3683bcb70549
https://www.mathworks.com/help/wavelet/ref/wentropy.html#mw_557b641c-ce8e-49cb-879a-2cb8bbddc994
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e = wentropy(x,'log energy') 

e = -229.5183 

Compute the threshold entropy of x with the threshold entropy equal to 0.2. 

e = wentropy(x,'threshold',0.2) 

e = 168 

Compute the Sure entropy of x with the threshold equal to 3. 

e = wentropy(x,'sure',3) 

e = 35.7962 

Compute the norm entropy of x with power equal to 1.1 

e = wentropy(x,'norm',1.1) 
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Exercise 

Calculate the time domain of a fault signal in Matlab! 

 

Solution 

dataInner = load(fullfile(matlabroot, 'toolbox', 'predmaint', ... 

    'predmaintdemos', 'bearingFaultDiagnosis', ... 

    'train_data', 'InnerRaceFault_vload_1.mat')); 

 

xInner = dataInner.bearing.gs; 

fsInner = dataInner.bearing.sr; 

tInner = (0:length(xInner)-1)/fsInner; 

figure 

plot(tInner, xInner) 

xlabel('Time, (s)') 
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ylabel('Acceleration (g)') 

title('Raw Signal: Inner Race Fault') 

xlim([0 0.1]) 
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Exercise 

Visualize the raw data in frequency domain! 

Solution 

figure 

[pInner, fpInner] = pspectrum(xInner, fsInner); 

pInner = 10*log10(pInner); 

plot(fpInner, pInner) 

xlabel('Frequency (Hz)') 

ylabel('Power Spectrum (dB)') 

title('Raw Signal: Inner Race Fault') 

legend('Power Spectrum') 
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Exercise 

Create the envelope spectrum of the signal above! 

Solution 

 

xNormal = dataNormal.bearing.gs; 

fsNormal = dataNormal.bearing.sr; 

tNormal = (0:length(xNormal)-1)/fsNormal; 

[pEnvNormal, fEnvNormal] = envspectrum(xNormal, fsNormal); 

 

figure 

plot(fEnvNormal, pEnvNormal) 

ncomb = 10; 

helperPlotCombs(ncomb, [dataNormal.BPFO dataNormal.BPFI]) 

xlim([0 1000]) 
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xlabel('Frequency (Hz)') 

ylabel('Peak Amplitude') 

title('Envelope Spectrum: Normal') 

legend('Envelope Spectrum', 'BPFO Harmonics', 'BPFI Harmonics') 
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11th week 
 

 

11 Digital Filters, FIR, IIR 
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In signal processing, a digital filter is a system that performs mathematical operations on a 

sampled, discrete-time signal to reduce or enhance certain aspects of that signal. This is in 

contrast to the other major type of electronic filter, the analog filter, which is typically an 

electronic circuit operating on continuous-time analog signals. 

A digital filter system usually consists of an analog-to-digital converter (ADC) to sample the 

input signal, followed by a microprocessor and some peripheral components such as 

memory to store data and filter coefficients etc. Program Instructions (software) running 

on the microprocessor implement the digital filter by performing the necessary 

mathematical operations on the numbers received from the ADC. In some high performance 

applications, an FPGA or ASIC is used instead of a general purpose microprocessor, or a 

specialized digital signal processor (DSP) with specific paralleled architecture for 

expediting operations such as filtering. 

Digital filters may be more expensive than an equivalent analog filter due to their increased 

complexity, but they make practical many designs that are impractical or impossible as 

analog filters. Digital filters can often be made very high order, and are often finite impulse 

response filters, which allows for linear phase response. When used in the context of real-

time analog systems, digital filters sometimes have problematic latency (the difference in 

time between the input and the response) due to the associated analog-to-digital and 
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digital-to-analog conversions and anti-aliasing filters, or due to other delays in their 

implementation. 

Digital filters are commonplace and an essential element of everyday electronics such as 

radios, cellphones, and AV receivers. 

A digital filter is characterized by its transfer function, or equivalently, its difference 

equation. Mathematical analysis of the transfer function can describe how it will respond 

to any input. As such, designing a filter consists of developing specifications appropriate to 

the problem (for example, a second-order low pass filter with a specific cut-off frequency), 

and then producing a transfer function which meets the specifications. 

 

The transfer function for a linear, time-invariant, digital filter can be expressed as a transfer 

function in the Z-domain; if it is causal, then it has the form:[3] 

𝐻(𝑧)  
𝐵(𝑧)

𝐴(𝑧)
 
𝑏  𝑏1𝑧

−1  𝑏2𝑧
−2 . . .  𝑏𝑁𝑧

−𝑁

1  𝑎1𝑧
−1  𝑎2𝑧

−2 . . .  𝑎𝑀𝑧
−𝑀

 

where the order of the filter is the greater of 𝑁 or 𝑀. See Z-transform's LCCD equation for 

further discussion of this transfer function. 
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This is the form for a recursive filter, which typically leads to an infinite impulse response 

(IIR) behaviour, but if the denominator is made equal to unity, i.e. no feedback, then this 

becomes a finite impulse response (FIR) filter. 

Analysis techniques 

A variety of mathematical techniques may be employed to analyze the behavior of a given 

digital filter. Many of these analysis techniques may also be employed in designs, and often 

form the basis of a filter specification. 

Typically, one characterizes filters by calculating how they will respond to a simple input 

such as an impulse. One can then extend this information to compute the filter's response 

to more complex signals. 

The impulse response is a characterization of the filter's behaviour. Digital filters are 

typically considered in two categories: infinite impulse response (IIR) and finite impulse 

response (FIR). In the case of linear time-invariant FIR filters, the impulse response is 

exactly equal to the sequence of filter coefficients, and thus: 

𝑦𝑛  ∑𝑏𝑘𝑥𝑛−𝑘  ∑ℎ𝑘𝑥𝑛−𝑘

𝑁

𝑘= 

𝑁

𝑘= 
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IIR filters on the other hand are recursive, with the output depending on both current and 

previous inputs as well as previous outputs. The general form of an IIR filter is thus: 

∑ 𝑎𝑚𝑦𝑛−𝑚  ∑𝑏𝑘𝑥𝑛−𝑘

𝑁

𝑘= 

𝑀

𝑚= 

 

Plotting the impulse response reveals how a filter responds to a sudden, momentary 

disturbance. An IIR filter is always recursive. While it is possible for a recursive filter to 

have a finite impulse response, a non-recursive filter always has a finite impulse response. 

An example is the moving average (MA) filter, which can be implemented both recursively 

and non recursively. 

Digital filters are not subject to the component non-linearities that greatly complicate the 

design of analog filters. Analog filters consist of imperfect electronic components, whose 

values are specified to a limit tolerance (e.g. resistor values often have a tolerance of ±5%) 

and which may also change with temperature and drift with time. As the order of an analog 

filter increases, and thus its component count, the effect of variable component errors is 

greatly magnified. In digital filters, the coefficient values are stored in computer memory, 

making them far more stable and predictable. 
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Because the coefficients of digital filters are definite, they can be used to achieve much more 

complex and selective designs – specifically with digital filters, one can achieve a lower 

passband ripple, faster transition, and higher stopband attenuation than is practical with 

analog filters. Even if the design could be achieved using analog filters, the engineering cost 

of designing an equivalent digital filter would likely be much lower. Furthermore, one can 

readily modify the coefficients of a digital filter to make an adaptive filter or a user-

controllable parametric filter. While these techniques are possible in an analog filter, they 

are again considerably more difficult. 

Digital filters can be used in the design of finite impulse response filters. Equivalent analog 

filters are often more complicated, as these require delay elements. 

Digital filters rely less on analog circuitry, potentially allowing for a better signal-to-noise 

ratio. A digital filter will introduce noise to a signal during analog low pass filtering, analog 

to digital conversion, digital to analog conversion and may introduce digital noise due to 

quantization. With analog filters, every component is a source of thermal noise (such as 

Johnson noise), so as the filter complexity grows, so does the noise. 

However, digital filters do introduce a higher fundamental latency to the system. In an 

analog filter, latency is often negligible; strictly speaking it is the time for an electrical signal 

to propagate through the filter circuit. In digital systems, latency is introduced by delay 
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elements in the digital signal path, and by analog-to-digital and digital-to-analog converters 

that enable the system to process analog signals. 

In very simple cases, it is more cost effective to use an analog filter. Introducing a digital 

filter requires considerable overhead circuitry, as previously discussed, including two low 

pass analog filters. 

Another argument for analog filters is low power consumption. Analog filters require 

substantially less power and are therefore the only solution when power requirements are 

tight. 

When making an electrical circuit on a PCB it is generally easier to use a digital solution, 

because the processing units are highly optimized over the years. Making the same circuit 

with analog components would take up a lot more space when using discrete components. 
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Types of digital filters 

There are various ways to characterize filters; for example: 

A linear filter is a linear transformation of input samples; other filters are nonlinear. Linear 

filters satisfy the superposition principle, i.e. if an input is a weighted linear combination of 

different signals, the output is a similarly weighted linear combination of the corresponding 

output signals. 

A causal filter uses only previous samples of the input or output signals; while a non-causal 

filter uses future input samples. A non-causal filter can usually be changed into a causal 

filter by adding a delay to it. 

A time-invariant filter has constant properties over time; other filters such as adaptive 

filters change in time. 

A stable filter produces an output that converges to a constant value with time, or remains 

bounded within a finite interval. An unstable filter can produce an output that grows 

without bounds, with bounded or even zero input. 

A finite impulse response (FIR) filter uses only the input signals, while an infinite impulse 

response (IIR) filter uses both the input signal and previous samples of the output signal. 

FIR filters are always stable, while IIR filters may be unstable. 
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A filter can be represented by a block diagram, which can then be used to derive a sample 

processing algorithm to implement the filter with hardware instructions. A filter may also 

be described as a difference equation, a collection of zeros and poles or an impulse response 

or step response. 

Some digital filters are based on the fast Fourier transform, a mathematical algorithm that 

quickly extracts the frequency spectrum of a signal, allowing the spectrum to be 

manipulated (such as to create very high order band-pass filters) before converting the 

modified spectrum back into a time-series signal with an inverse FFT operation. These 

filters give O(n log n) computational costs whereas conventional digital filters tend to be 

O(n2). 

Another form of a digital filter is that of a state-space model. A well used state-space filter 

is the Kalman filter published by Rudolf Kálmán in 1960. 

Traditional linear filters are usually based on attenuation. Alternatively nonlinear filters 

can be designed, including energy transfer filters,which allow the user to move energy in a 

designed way so that unwanted noise or effects can be moved to new frequency bands 

either lower or higher in frequency, spread over a range of frequencies, split, or focused. 

Energy transfer filters complement traditional filter designs and introduce many more 
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degrees of freedom in filter design. Digital energy transfer filters are relatively easy to 

design and to implement and exploit nonlinear dynamics. 

Infinite impulse response (IIR) is a property applying to many linear time-invariant 

systems that are distinguished by having an impulse response h(t) which does not become 

exactly zero past a certain point, but continues indefinitely. This is in contrast to a finite 

impulse response (FIR) system in which the impulse response does become exactly zero at 

times t>T for some finite T, thus being of finite duration. Common examples of linear time-

invariant systems are most electronic and digital filters. Systems with this property are 

known as IIR systems or IIR filters. 

In practice, the impulse response, even of IIR systems, usually approaches zero and can be 

neglected past a certain point. However the physical systems which give rise to IIR or FIR 

responses are dissimilar, and therein lies the importance of the distinction. For instance, 

analog electronic filters composed of resistors, capacitors, and/or inductors (and perhaps 

linear amplifiers) are generally IIR filters. On the other hand, discrete-time filters (usually 

digital filters) based on a tapped delay line employing no feedback are necessarily FIR 

filters. The capacitors (or inductors) in the analog filter have a "memory" and their internal 

state never completely relaxes following an impulse (assuming the classical model of 

capacitors and inductors where quantum effects are ignored). But in the latter case, after 
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an impulse has reached the end of the tapped delay line, the system has no further memory 

of that impulse and has returned to its initial state; its impulse response beyond that point 

is exactly zero. 

Although almost all analog electronic filters are IIR, digital filters may be either IIR or FIR. 

The presence of feedback in the topology of a discrete-time filter (such as the block diagram 

shown below) generally creates an IIR response. The z domain transfer function of an IIR 

filter contains a non-trivial denominator, describing those feedback terms. The transfer 

function of an FIR filter, on the other hand, has only a numerator as expressed in the general 

form derived below.  

The transfer functions pertaining to IIR analog electronic filters have been extensively 

studied and optimized for their amplitude and phase characteristics. These continuous-

time filter functions are described in the Laplace domain. Desired solutions can be 

transferred to the case of discrete-time filters whose transfer functions are expressed in the 

z domain, through the use of certain mathematical techniques such as the bilinear 

transform, impulse invariance, or pole–zero matching method. Thus digital IIR filters can 

be based on well-known solutions for analog filters such as the Chebyshev filter, 

Butterworth filter, and elliptic filter, inheriting the characteristics of those solutions. 
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Digital filters are often described and implemented in terms of the difference equation 

that defines how the output signal is related to the input signal: 

𝑦[𝑛]  
1

𝑎 
(𝑏 𝑥[𝑛]  𝑏1𝑥[𝑛 − 1] . . .  𝑏𝑝𝑥[𝑛 − 𝑃] − 𝑎1𝑦[𝑛 − 1]

− 𝑎2𝑦[𝑛 − 2]−. . . −𝑎𝑄𝑦[𝑛 − 𝑄]) 

where: 

• 𝑃 is the feedforward filter order 

• 𝑏𝑖 are the feedforward filter coefficients 

• 𝑄 is the feedback filter order 

• 𝑎𝑖 are the feedback filter coefficients 

• 𝑥[𝑛]is the input signal 

• 𝑦[𝑛] is the output signal. 

 

𝑦[𝑛]  
1

𝑎 
(∑𝑏𝑖𝑥[𝑛 − 𝑖] −∑𝑎𝑗𝑦[𝑛 − 𝑗]

𝑄

𝑗=1

𝑃

𝑖= 

) 
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The main advantage digital IIR filters have over FIR filters is their efficiency in 

implementation, in order to meet a specification in terms of passband, stopband, ripple, 

and/or roll-off. Such a set of specifications can be accomplished with a lower order (Q in 

the above formulae) IIR filter than would be required for an FIR filter meeting the same 

requirements. If implemented in a signal processor, this implies a correspondingly fewer 

number of calculations per time step; the computational savings is often of a rather large 

factor. 

On the other hand, FIR filters can be easier to design, for instance, to match a particular 

frequency response requirement. This is particularly true when the requirement is not one 

of the usual cases (high-pass, low-pass, notch, etc.) which have been studied and optimized 

for analog filters. Also FIR filters can be easily made to be linear phase. 

Typical IIR filters in practice are Butterworth, Csebisev, Elliptic filters. 

In signal processing, a finite impulse response (FIR) filter is a filter whose impulse 

response (or response to any finite length input) is of finite duration, because it settles to 

zero in finite time. This is in contrast to infinite impulse response (IIR) filters, which may 

have internal feedback and may continue to respond indefinitely (usually decaying). 

FIR filters can be discrete-time or continuous-time, and digital or analog. 
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For a causal discrete-time FIR filter of order N, each value of the output sequence is a 

weighted sum of the most recent input values: 

𝑦[𝑛]  𝑏 𝑥[𝑛]  𝑏1𝑥[𝑛 − 1] . . .  𝑏𝑁𝑥[𝑛 − 𝑁]  ∑𝑏𝑖 ∙ 𝑥[𝑛 − 𝑖]

𝑁

𝑖= 

 

where: 

• 𝑥[𝑛] is the input signal,  

• 𝑦[𝑛] is the output signal, 

• 𝑁 is the filter order; an 𝑁𝑡ℎ-order filter has 𝑁  1 terms on the right-hand side 

• 𝑏𝑖 is the value of the impulse response at the i’th instant for 0 ≤ 𝑖 ≤ 𝑁 of an 𝑁𝑡ℎ-order 

FIR filter. If the filter is a direct form FIR filter then 𝑏𝑖 is also a coefficient of the filter. 

 

An FIR filter has a number of useful properties which sometimes make it preferable to an 

infinite impulse response (IIR) filter. FIR filters: 
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Require no feedback. This means that any rounding errors are not compounded by summed 

iterations. The same relative error occurs in each calculation. This also makes 

implementation simpler. 

Can easily be designed to be linear phase by making the coefficient sequence symmetric. 

This property is sometimes desired for phase-sensitive applications, for example data 

communications, seismology, crossover filters, and mastering. 

The main disadvantage of FIR filters is that considerably more computation power in a 

general purpose processor is required compared to an IIR filter with similar sharpness or 

selectivity, especially when low frequency (relative to the sample rate) cutoffs are needed. 

However, many digital signal processors provide specialized hardware features to make 

FIR filters approximately as efficient as IIR for many applications. 
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11th week – Questions 
 

Question 

What is the theory and the application fields of the FIR digital filters? 

Answer 

A finite impulse response (FIR) filter is a filter whose impulse response (or response to 

any finite length input) is of finite duration, because it settles to zero in finite time. This is 

in contrast to infinite impulse response (IIR) filters, which may have internal feedback and 

may continue to respond indefinitely (usually decaying). 

FIR filters can be discrete-time or continuous-time, and digital or analog. 

They should be designed with filter coefficients. 
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Question 

What is the theory and the application fields of the IIR digital filters? 

 

Answer 

Infinite impulse response (IIR) is a property applying to many linear time-invariant 

systems that are distinguished by having an impulse response h(t) which does not become 

exactly zero past a certain point, but continues indefinitely. This is in contrast to a finite 

impulse response (FIR) system in which the impulse response does become exactly zero at 

times t>T for some finite T, thus being of finite duration. Common examples of linear time-

invariant systems are most electronic and digital filters. Systems with this property are 

known as IIR systems or IIR filters. 

IIR filters are so-called “ready” filters such as Butterworth, Chebisev etc. which can be used 

directly for applications. 
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Question 

What is the difference between analogue and digital filters? What are the advantages of 

digital filtering? 

Answer 

A finite impulse response (FIR) filter uses only the input signals, while an infinite impulse 

response (IIR) filter uses both the input signal and previous samples of the output signal. 

FIR filters are always stable, while IIR filters may be unstable. 

Advantages: 

Flexibility 

Easy to modify for certain purposes 

Higher filtering cabability 
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11th week – Exercises 
 

Exercise 

IIR filter of a 6th-order lowpass Butterworth must be designed with a cutoff frequency of 

300 Hz, which, for data sampled at 1000 Hz, corresponds to 0.6π rad/sample. Plot its 

magnitude and phase responses. Use it to filter a 1000-sample random signal. 

Solution 

fc = 300; 

fs = 1000; 

[b,a] = butter(6,fc/(fs/2)); 

freqz(b,a) 

dataIn = randn(1000,1); 

dataOut = filter(b,a,dataIn); 
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Exercise 

Design an IIR filter 6th-order Butterworth bandstop filter with normalized edge 

frequencies of 0.2π and 0.6π rad/sample. Plot its magnitude and phase responses. Use it to 

filter random data. 

Solution 
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Exercise 

Design a 9th-order highpass Butterworth filter. Specify a cutoff frequency of 300 Hz, which, 

for data sampled at 1000 Hz, corresponds to 0.6π rad/sample. Plot the magnitude and 

phase responses. Convert the zeros, poles, and gain to second-order sections for use by 

fvtool. 

Solution 

[z,p,k] = butter(9,300/500,'high'); 

sos = zp2sos(z,p,k); 

fvtool(sos,'Analysis','freq') 
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12th week 
 

 

12 Digital Filter Design 
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Filters are used in a wide variety of applications. Most of the time, the final goal of using a 

filter is to achieve a kind of frequency selectivity on the spectrum of the input signal. 

As an example, suppose that a 50-Hz noise falls on top of the signal produced by a sensor. 

The noise component may be strong enough to limit the measurement precision. The 

output of the sensor is usually converted to a digital signal by an ADC to be processed by a 

DSP or a microcontroller. Therefore, we can use a digital filter after the ADC to eliminate 

the noise component. In this particular example, a notch filter centered at 50 Hz can be 

utilized to suppress the noise. 

Although filters are easily understood and calculated, the practical challenges of their 

design and implementation are significant and are the subject of much advanced research. 

There are two categories of digital filter: the recursive filter and the nonrecursive filter. 

These are often referred to as infinite impulse response (IIR) filters and finite impulse 

response (FIR) filters, respectively. 

An FIR filter is designed by finding the coefficients and filter order that meet certain 

specifications, which can be in the time domain (e.g. a matched filter) and/or the frequency 

domain (most common). Matched filters perform a cross-correlation between the input 

signal and a known pulse shape. The FIR convolution is a cross-correlation between the 

input signal and a time-reversed copy of the impulse response. Therefore, the matched 
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filter's impulse response is "designed" by sampling the known pulse-shape and using those 

samples in reverse order as the coefficients of the filter. 

 

When a particular frequency response is desired, several different design methods are 

common: 

Window design method 
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Frequency sampling method 

Least MSE (mean square error) method 

Parks–McClellan method (also known as the equiripple, optimal, or minimax method). The 

Remez exchange algorithm is commonly used to find an optimal equiripple set of 

coefficients. Here the user specifies a desired frequency response, a weighting function for 

errors from this response, and a filter order N. The algorithm then finds the set of N+1 

coefficients that minimize the maximum deviation from the ideal. Intuitively, this finds the 

filter that is as close as possible to the desired response given that only N+1 coefficients can 

be used. This method is particularly easy in practice since at least one includes a program 

that takes the desired filter and N, and returns the optimum coefficients. 

Equiripple FIR filters can be designed using the DFT algorithms as well. The algorithm is 

iterative in nature. The DFT of an initial filter design is computed using the FFT algorithm 

(if an initial estimate is not available, h[n]=delta[n] can be used). In the Fourier domain, or 

DFT domain, the frequency response is corrected according to the desired specs, and the 

inverse DFT is then computed. In the time-domain, only the first N coefficients are kept (the 

other coefficients are set to zero). The process is then repeated iteratively: the DFT is 

computed once again, correction applied in the frequency domain and so on. 
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Software packages such as MATLAB, GNU Octave, Scilab, and SciPy provide convenient 

ways to apply these different methods. 

 

 

Levels of filters 
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The design procedure by Equiripple method with Labview software consists of three 

steps:  

 
Design procedure for wavelets and filter banks in Labview 
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Figure above represents the wavelet design configuration. The combination of zeros is not 

unique. Because all filters act as real-valued FIR filters, the zeros of 𝑃 (𝑧), 𝐺 (𝑧) and 𝐻 (𝑧) 

are symmetrical in the z-plane. Zeros of 𝐺  and 𝐻  of the new-designed wavelet are chosen 

in a way to provide the best result for the diagnosis of the grinding problem. 

For both orthogonal and biorthogonal wavelets and filter banks, either maximum flat or 

equiripple filters for the product of lowpass filters 𝑃 (𝑧) can be used. The maximum flat 

filters have good frequency attenuation, but wider transition band. In the experiment, the 

positive equiripple is used which is a halfband filter, namely a special case of general 

equiripple halfband filters. It proved to be more efficient than the maximum flat filter. The 

Fourier transform of the positive equiripple filter is always non-negative. Positive 

equiripple halfband filter is appropriate for orthogonal wavelets because the auxiliary 

function 𝑃 (𝑧) must be non-negative. 

Remez exchange algorithm was used as the pert of the Parks-McClellan method to find an 

optimal equiripple set of coefficients which is an iterative algorithm used to find simple 

approximations to functions. The algorithm then finds the set of 𝑁  1 coefficients that 

minimize the maximum deviation from the ideal. Intuitively, this finds the filter that is as 

close as possible to the desired response given that only 𝑁  1 coefficients can be used. 

Parks-McClellan VI generates a set of linear-phase FIR multiband digital filter coefficients 

using the number of taps, sampling frequency: fs, band parameters and filter type. 

https://zone.ni.com/reference/en-XX/help/371361L-01/lvanlsconcepts/fourier_transform/


ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 409 

Two parameters are associated with equiripple filters number of taps and Passband. Use 

the number of taps control to define the number of coefficients of 𝑃 (𝑧). Because 𝑃 (𝑧) is a 

type-I FIR filter, the length of 𝑃 (𝑧) must be odd. Use the Passband control to define the 

normalized passband frequency,  𝑝, of 𝑃 (𝑧). The value of  𝑝 must be less than 0.5 and the 

value of 0.3 was chosen here. Longer filters improve the sharpness of the transition band 

and the magnitude of the attenuation in the stopband at the expense of extra computation 

time for implementation. This lowpass filter with 31 taps provided the wavelet with 

sufficient correlation to the transient under analysis (Figure 31). In a general equiripple 

halfband filter, halfband refers to a filter in which  𝑠   𝑝  𝜋, where  𝑠 denotes the 

stopband frequency and  𝑝 denotes the passband frequency, as Figure shows. 

 
General equiripple halfband filter 
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The filter has the form 

𝑃 (𝑧)  (1  𝑧−1)2𝑝𝑄(𝑧) 

and as many zeros are imposed at     𝜋 as we like. The halfband equiripple filters only 

can have a pair of zeros at     𝜋, which gives the equiripple type filters slower 

convergence rates. However, it is easier to balance the frequency attenuation and transition 

band for an equiripple filter therefore it is used in this experiment. For a given transition 

band, the attenuation is proportional to the filter order of 𝑃 (𝑧). The larger the order, the 

better the attenuation. The zero pairs at 𝜋 specifies the value of the parameter p, which 

determines the number of zeros placed at 𝜋 on the unit circle. The more the zeros at 𝜋, the 

smoother the corresponding wavelet. The value of p also affects the transition band of the 

frequency response. A large value of p results in a narrow transition band. In the time 

domain, a narrower transition band implies more oscillations in the corresponding wavelet. 

Once 𝑃 (𝑧) is determined it is necessary factorize it into the lowpass filters, 𝐺 (𝑧)) and 

𝐻 (𝑧). Factorization filter type was chosen arbitrary. 

Using these setting parameters the designed wavelet provided higher 𝐸/𝑆 ratio than the 

conventional Symlet and Daubechies wavelets which are frequently used in bearing fault 

diagnostics.  
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Configuration of the wavelet design 
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Since the new wavelet basis cannot be given in closed form it is given by the filter 

coefficients in Table. 

 

Designed wavelet filter coefficients 

 Synthesis filters Analysis filters 

No. Lowpass 

(H0) 

Highpass 

(H1) 

Lowpass 

(G0) 

Highpass 

(G1) 

0 -0.07 0.0032 0.00 -0.0657 

1 -0.14 -0.0069 -0.01 0.142 

2 0.07 0.0025 0.00 0.0698 

3 0.57 0.0258 0.03 -0.5680 

4 0.73 0.0023 0.00 0.7290 

5 0.28 -0.0529 -0.05 -0.2811 

6 -0.12 -0.0375 0.04 -0.1241 

7 -0.03 0.0129 0.13 0.0328 

8 0.13 0.0330 -0.03 0.1300 

9 0.04 -0.1230 -0.12 -0.0373 

10 -0.05 -0.2810 0.28 -0.0531 
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11 0.00 0.7280 0.73 0.0022 

12 0.03 -0.5670 0.57 0.0258 

13 0.00 0.0704 0.07 0.0026 

14 -0.01 0.1420 -0.14 -0.0068 

15 0.00 -0.0658 -0.07 -0.0032 

 

 
Analysis and synthesis functions of the new-designed wavelet 
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Values of the analysis and synthesis filters of the new-designed wavelet 

 

The coefficients of analysis and synthesis filters are in Figures. The filter coefficients were 

checked with Chapa and Rao’s method, where the Meyer wavelet amplitude and phase 

spectra were matched independently to the signal. Since the two wavelets provided the 

same efficiency in fault detection and width estimation in practice, the filter coefficients 

provided by Labview were applied. The new wavelet was compared with five generally 

used discrete wavelets using the Maximum Energy-to-Shannon Entropy ratio criteria.  

 

 



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 415 

 

12th week – Questions 
 

Question 

What is the Parks–McClellan method and its background? 

Answer 

Parks–McClellan method (also known as the equiripple, optimal, or minimax method). The 

Remez exchange algorithm is commonly used to find an optimal equiripple set of 

coefficients. Here the user specifies a desired frequency response, a weighting function for 

errors from this response, and a filter order N. The algorithm then finds the set of N+1 

coefficients that minimize the maximum deviation from the ideal. Intuitively, this finds the 

filter that is as close as possible to the desired response given that only N+1 coefficients can 

be used. This method is particularly easy in practice since at least one includes a program 

that takes the desired filter and N, and returns the optimum coefficients. 
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Question 

Describe the Equiripple FIR filters and its conventional software packages in practice! 

Answer 

Equiripple FIR filters can be designed using the DFT algorithms as well. The algorithm is 

iterative in nature. The DFT of an initial filter design is computed using the FFT algorithm 

(if an initial estimate is not available, h[n]=delta[n] can be used). In the Fourier domain, or 

DFT domain, the frequency response is corrected according to the desired specs, and the 

inverse DFT is then computed. In the time-domain, only the first N coefficients are kept (the 

other coefficients are set to zero). The process is then repeated iteratively: the DFT is 

computed once again, correction applied in the frequency domain and so on. 

Software packages such as MATLAB, GNU Octave, Scilab, and SciPy provide convenient 

ways to apply these different methods. 
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Question 

What is the point of the Remez exchange algorithm? 

Answer 

Remez exchange algorithm was used as the pert of the Parks-McClellan method to find an 

optimal equiripple set of coefficients which is an iterative algorithm used to find simple 

approximations to functions. The algorithm then finds the set of N+1 coefficients that 

minimize the maximum deviation from the ideal. Intuitively, this finds the filter that is as 

close as possible to the desired response given that only N+1 coefficients can be used. 

Parks-McClellan VI generates a set of linear-phase FIR multiband digital filter coefficients 

using the number of taps, sampling frequency: fs, band parameters and filter type. 
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12th week – Exercises 
 

Exercise 

Design a minimum-order lowpass FIR filter with a passband frequency of 0.37*pi 

rad/sample, a stopband frequency of 0.43*pi rad/sample (hence the transition width 

equals 0.06*pi rad/sample), a passband ripple of 1 dB and a stopband attenuation of 30 dB. 

Minimum-order designs are obtained by specifying passband and stopband frequencies as 

well as a passband ripple and a stopband attenuation. The design algorithm then chooses 

the minimum filter length that complies with the specifications. 

Solution 

Fpass = 0.37;  

Fstop = 0.43; 

Ap = 1; 

Ast = 30; 

 

d = designfilt('lowpassfir','PassbandFrequency',Fpass,... 



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 419 

  'StopbandFrequency',Fstop,'PassbandRipple',Ap,'StopbandAttenuation',Ast); 

hfvt = fvtool(d); 
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Exercise 

Design a filter with the same specifications as above using the Kaiser window method and 

compare its response to the equiripple filter. 

The Kaiser window method yields a larger filter order for the same specifications, the 

algorithm is less computationally expensive and less likely to have convergence issues 

when the design specifications are very stringent. This may occur if the application requires 

a very narrow transition width or a very large stopband attenuation. 

Solution 

dk = designfilt('lowpassfir','PassbandFrequency',Fpass,... 

  'StopbandFrequency',Fstop,'PassbandRipple',Ap,... 

  'StopbandAttenuation',Ast, 'DesignMethod', 'kaiserwin'); 

addfilter(hfvt,dk); 

legend(hfvt,'Equiripple design', 'Kaiser window design') 
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ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – by Kocsis & Deák – page 422 

Exercise 

Consider a 30-th order lowpass FIR filter with a passband frequency of 370 Hz, a stopband 

frequency of 430 Hz, and sample rate of 2 kHz. There are two design methods available for 

this particular set of specifications: equiripple and least squares. Let us design one filter for 

each method and compare the results. 

Solution 

N = 30; 

Fpass = 370; 

Fstop = 430; 

Fs = 2000;  

% Design method defaults to 'equiripple' when omitted 

deq = designfilt('lowpassfir','FilterOrder',N,'PassbandFrequency',Fpass,... 

  'StopbandFrequency',Fstop,'SampleRate',Fs); 

dls = designfilt('lowpassfir','FilterOrder',N,'PassbandFrequency',Fpass,... 

  'StopbandFrequency',Fstop,'SampleRate',Fs,'DesignMethod','ls'); 

 

hfvt = fvtool(deq,dls); 
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legend(hfvt,'Equiripple design', 'Least-squares design') 
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