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An Overview of the Process of CT

In this chapter we deseribe, in the most general terms, the whole process of
x-ray computerized tomography. Our intention is to give a brief overview.
Hence, some terms with which the reader may not be familiar are introduced
without proper definition. We ask the reader’s indulgence; such terms will be
carcfully defined in subsequent chapters.

2.1 What Are We Trying to Do?

The aim of CT is to obtain information regarding the nature of material
occupying exact positions inside the body. Generally speaking, the process
as it is discussed in most of this book is as follows. A CT scanner is used
to produce for a specified cross section of the body a sinogram, such as the
one illustrated in Fig. 1.5(b). From this sinogram, we need to produce a two-
dimensional image of the x-ray attenuation coefficient distribution in the cross
section, as illustrated in Fig. 1.5(d).

In addition, the reconstruction of a series of parallel cross sections enables
us to discover and display the precise shape of selected organs, as illustrated
in Fig. 2.1. Such displays are obtained by further computer processing of the
reconstructed cross sections (see Chapter 14).

2.2 Traditional Tomography

Prior to the introduction of CT, sectional imaging was done using various
modes of (not computerized) tomography. We now describe a mode of tomog-
raphy (linear tomography), illustrated in Fig. 2.2.

If we are interested in a cross section C of a patient, we can obtain a fairly
good estimate by the following tomographic method. We place a photographic
plate P parallel to the cross section €' on one side of the patient, and an x-ray
source on the other side. By moving the x-ray source at a fixed speed parallel
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28 2 An Overview of the Process of CT

(c) (d)

Fig. 2.1: Three-dimensional displays of bone structures of patients produced during
1986-8 by software developed in the author’s research group at the University of
Pennsylvania for the General Electric Company. (a) Facial bones of an accident vie-
tim prior to operation. (b) The same patient at the time of a one-year postoperative
follow-up. (c) A tibial fracture. (d) A pelvic fracture.

to ' in one direction, and moving P at an appropriate speed in the opposite
direction, we can ensure that a point in €' always projects onto the same point
in P, but a point in the patient above or below C is projected onto different
points in P. Thus on the photographic plate the section € will stand out,
while the rest of the body will he blurred out.
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Fig. 2.2: Linear tomography. C: patient cross section; 4 and B: two points in the
cross section C; X1 and Xz: positions of the x-ray source at times {; and t2; £: the
photographic plate; Ay and As: positions of a fixed point on P at times {; and (g
B and Bs: positions of another fixed point on P at times ¢, and ¢2. (Reproduced
from [100], with permission from Elsevier.)

More closely related to CT is transazial tomography. An example of this
is shown in Fig. 2.3. The patient sits in a special rotating chair in an upright
position. The x-ray film lies flat on a rotating horizontal table beside the
patient. The table is positioned a little below the desired focal plane. X-rays
are directed obliquely through the patient and onto the film. The x-ray tube
remains stationary throughout the exposure. The patient and film both rotate
in the same direction and at the same velocity. Only those points actually in
the focal plane remain in sharp focus throughout a rotation. Points above and
below the focal plane are blurred. The section thickness is determined by the
angle between the x-ray tube and film. The more obliquely the central ray is
directed toward the film the thinner is the tomographic section.

Fig. 2.3: Transaxial tomography.
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30 2 An Overview of the Process of CT

In traditional forms of tomography, objects that are out of the focal plane
are visible in the image, although in a blurred form. In CT, the images of
cross sections are not influenced by the objects outside those sections. For this
reason, the images produced by CT are much sharper, and hence generally of
greater clinical utility. We will therefore forgo further discussion of traditional
tomography and concentrate only on CT.

2.3 Data Collection for CT

A typical method by which data are collected for transverse section imaging in
CT is indicated in Fig. 2.4. A large number of measurements are taken. Each
of these measurements is related to an x-ray source position combined with
an x-ray detector position. Both the source and the detector lie in the plane
of the section to be imaged. For each combination of source and detector
positions, two physical measurements are taken: a calibration measurement
and an actual measurement. We now explain what these measurements are
for a single fixed source and detector position combination.

During the calibration measurement, the object whose cross section we
hope to image is not in the path of the x-ray beam from the source to the

Y
SOURCE i
Z=1,
COMPENSATOR
RECONSTRUCTION
REFERENCE =0\ REGISH
DETECTOR
A >
z=D
L
Z=124
DETECTOR

Fig. 2.4: Data collection for CT.
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detector. In fact, it is assumed that the part of the beam that intersects the
so-called reconstruction region (see Fig. 2.4) traverses through a homogeneous
reference material such as air or water. The calibration measurement tells us
how many out of a large but fixed number of photons that leave the source are
counted by the detector. A reference detector serves the purpose of compen-
sating for fluctuations in the strength of the x-ray source. Compensation can
be done by dividing the number of photons counted by the detector by the
number of photons counted by the reference detector. During the actual mea-
surement, the object of interest is inserted into the reconstruction region, (par-
tially} replacing the reference material. It is an important restriction that the
object of interest does not occupy any point outside the reconstruction region.
On the other hand, we allow the possibility of additional objects occupying
fixed positions outside the reconstruction region during both the calibration
and the actual measurement. An example of this is the object marked com-
pensator in Fig. 2.4. (It compensates for the thinness of a transverse section
of human body near the edges. This makes the number of photons reaching
the detector at different positions more uniform and so reduces the range of
photon counts that a detector needs to handle.) The actual measurement is
defined in the same way as the calibration measurement, except that the cross
section to be imaged is now in position. It influences the photon count by the
detector, but not the photon count by the reference detector.

In summary, the size of the actual measurement as compared to the size of
the calibration measurement depends on the photon absorbing and scattering
properties of the object to be reconstructed as compared to those properties
of a reference material.

‘We obtain a calibration measurement and an actual measurement for each
of many source and detector position combinations. From these two sets of
numbers we wish to produce a third set, namely, the set of CT numbers for the
cross section of the object under investigation. These numbers, when coded
into grayscale images, give the type of pictures that we see in Fig. 1.5(d). In
the next section we discuss the physical interpretation of these numbers and
images.

2.4 Voxels, Pixels, and CT Numbers

In a vacuum all x-ray photons that leave a source in the direction of a detector
will reach the detector. When a material is placed between the source and
the detector, some of the photons that leave the source in the direction of
the detector will be removed from the beam (absorbed or scattered). The
probability that a photon gets removed depends on the energy of the photon
and on the material between the source and the detector.

The linear attenuation coefficient jit of a tissue t at energy & is defined
as follows. Let p be the probability that a photon of energy €&, which enters
a uniform slab of the tissue ¢ of unit thickness, on a line L perpendicular to
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32 2 An Overview of the Process of CT

the face of the slab, will not be absorbed or scattered in the slab (i.e., pis
the transmittance at energy € of the slab along the line L, see Section 1.2 and
especially Fig. 1.20). We define

pe=—Inp, (2.1)

where In denotes the natural logarithm. Note that the size of the linear at-
tenuation coefficient is dependent on the unit of length used. As is justified in
Section 15.1, the linecar attenuation coefficient is measured in units of inverse
length. For example, the linear attenuation of water at 73 keV is 0.19 cm L.

In what follows we shall be working with the relative linear attenuation at
energy €. At any point of space, we define the relative linear attenuation to be
pt—p?, where ¢ is the tissue occupying the point of space during the actual
measurement and « is the material occupying the point during the calibration
measurement. Since we assume that the exterior of the reconstruction region is
the same during the two sets of measurements, the relative linear attenuation
is zero for all points outside the reconstruction region for all energies. Note
also that for all points inside the reconstruction region py is the same, since
the reference material is supposed to be homogeneous during the calibration
measurement.

Now suppose that we are interested in a cross-sectional slice of the human
body that is, say, 3 mm thick. We can subdivide this slice into small 3 mm
long blocks with equal, square-shaped cross sections. These blocks are usually
referred to as volume elements, or vexels, for short. Roughly speaking, a C'T
number is proportional to the average relative linear attenuation in a voxel.
Since the relative lincar attenuation itself is encrgy dependent, this definition
needs further clarification, which is given in the next section. Typically, the
background material is assumed to have the linear attenuation of water (thus
the CT number of water is zero), and the scale of CT numbers is adjusted so
that the CT number of air is approximately —1000.

Suppose, for example, that the reconstruction region in Fig. 2.4 is a square
41.6x 41.6 cm?, and we wish to use voxels that are 3 x 0.65 x 0.65 mm?®. Then
there is a 640 x 640 array of such voxels that exactly fills the reconstruction
region, providing us with a 640 x 640 array of CT numbers. In displaying the
cross section, we display the CT numbers. In this case, we want to display
a 640 x 640 array of small squares, with the uniform grayness in each one
being proportional to the CT number of the voxel in the appropriate position.
These small squares are referred to as picture elements, or pizels, for short.

2.5 The Problem of Polychromaticity
When an x-ray beam passes through the body, its attenuation at any point

depends on the material at that point and on the energy distribution (spec-
trum) of the beam. In CT the spectrum is made up from many energy levels
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(polychromatic) and it changes (hardens) as the beam passes through the ob-
ject. Thus, the attenuation at a point may vary with the direction of the beam
passing through it. If we had a spectrum of only one energy level (monochro-
matic), this would not be the case. Each point would have a uniquely assigned
attenuation coeflicient, and reconstruction of the distribution of these coeffi-
cients would be a well-defined aim of computerized tomography.

We would like the following statement to be true: “The CT number as-
signed to a voxel is a property of the tissue occupying the voxel and does not
depend on the location of the voxel in the slice.” This is obviously desirable
for diagnostic purposes. Also, as we shall see in the following, the truth of
the statement is assumed in the development of mathematical procedures for
calculating CT numbers.

A suitable definition for CT numbers is one in which a CT number is
a multiple of the average relative linear attenuation of a voxel at a specified
energy €, to which we refer as the effective energy. Suppose now that we have a
monochromatic x-ray source with photon energy €. For a fixed position of the
source and detector pair, let Cp, be the calibration measurement (the count
of the number of photons that get from the source to the detector without the
object to be reconstructed being between them, divided by the count of the
reference detector), and let A,, be the actual measurement (the count of the
number of photons that get from the source to the detector with the object
of interest in place, divided by the count of the reference detector). We define
the monochromatic ray sum, m, for this beam by

m = —In (Am/Cm), (2.2)

and we refer to the set of ms for all source and detector pair positions as the
monochromatic projection data. Based on the physical and mathematical facts
to be discussed. we know that the relative linear attenuation inside the slice
at the effective energy € can be accurately estimated from the monochromatic
projection data.

In practice, the x-ray beam is polychromatic. Let C, and A, denote the
calibration and actual measurement, respectively, for a particular source—
detector pair position with the polychromatic x-ray beam. We define the
polychromatic ray sum, p, for this x-ray beam by

p=-In(4,/C,), (2.3)

and we refer to the set of ps for all source and detector pair positions as the
polychromatic projection data.

Our problem is the following. For any source and detector position we can
obtain p, but the reconstruction procedure requires m. The question naturally
arises: Does p uniquely determine m? Unfortunately, except in unrealistically
restrictive cases, the answer is “no.”

A more pragmatic question is: Given p, can we approximate m well enough
so that it leads to diagnostically useful CT numbers? There the answer appears
to be “ves,” as is illustrated in the following chapters.
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2.6 Reconstruction Algorithms

We now briefly discuss the major topic of this book: the method for obtaining
CT numbers from the monochromatic projection data. In practice, we apply
this method using corrected polychromatic projection data in place of the
(usually unavailable) monochromatic projection data.

Sinee we wish fo implement our method on a computer, we need precise
instructions on how the CT numbers are to be obtained from the monochro-
matic projection data. A finite sequence of unambiguous instructions that tell
us how to get, step by step, from some given input to the desired output is
an elgorithm. Instructions that a physician writes up for unskilled laboratory
assistants on what tests to perform next on a sample, based on the outcome
of previous tests, should (and usually do) form an algorithm. The instructions
provided by the Internal Revenue Service on how to fill out a tax return should
also form an algorithm; the fact that they do not gives rise to the honorable
profession of tax accountancy.

Basically the same procedure would have to be described differently de-
pending on at whom the description is aimed. A computing machine needs
a very detailed description (a computer program) in order to perform the
same calculations that a mathematician would perform from just a few brief
formulas.

In order to design an algorithm for obtaining CT numbers from monochro-
matic projection data, we first replace the problem by a simplified mathemat-
ical idealization of it. This has the same standing as the classical assumption
one makes in calculating the earth’s orbit; namely, that all the mass of the
earth is concentrated in a single point at its center. While the assumption is
blatantly false, as long as it leads to correct calculations, there is every reason
to use it: it makes the theory and the resulting calculations tractable. There
is very little we could do in calculating the earth’s orbit if we had to know
the location of every fly before such a calculation could be carried out.

The simplifying assumptions we make in setting up the theory for recon-
struction algorithms are: (1) slices are infinitely thin; (2) for any particular
source and detector pair position, all x-ray photons travel in the same straight
line (which lies in the infinitely thin slice). A consequence of the first assump-
tion is that the distinction between voxels and pixels disappears. Indeed, since
the slice is infinitely thin, it can be thought of as a picture whose grayness at
any point (z, y) is proportional to the relative linear attenuation pz(x,y) at
that point. This is the reason why the theory behind reconstruction algorithms
is often referred to as “image reconstruction from projections.”

Let L be the straight line that is the path of all the x-ray photons for
a particular source—detector pair and let m be the corresponding monochro-
matic ray sum. Based on our definition of a linear attenuation coefficient, it
is proved in Section 15.2 that

D
m:/ pe(r,y) dz. (2.4)

0
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In this formula, ~ denotes “approximately equal,” z is the distance of the
point (z, y) on the line L, and the integration limits 0 and D are clear from
Fig. 2.4.

Sinece je(x,y) = 0 for points (z,y) outside the reconstruction region,
fOD pa(z,y) is the integral of pz(x,y) along the line L. Thus our problem
is to calculate the values of pz(z,y) from estimates of its integrals along a
number of lines, namely from the monochromatic projection data.

In some sense this problem was solved in 1917 by Radon. Let £ denote the
distance of the line I from the origin, let # denote the angle made with the
z axis by the perpendicular drawn from the origin to L (see Fig. 2.4), and
let m{£, ¢) denote the integral of uz(z,y) along the line L. Radon proved (see
Section 15.3) that

pe(z,y) = llnl/ / my(zcosf +ysind 4+ q,0)didg,  (2.5)

where m;(f,6) denotes the partial derivative of m(f,f) with respect to /.
While the exact details of this formula are likely to be obscure to a non-
mathematician, its implication should be clear: the distribution of the relative
linear attenuations in an infinitely thin slice is uniquely determined by the set
of all its line integrals.

This seems to indicate that the reconstruction problem has been solved
since 1917. However, there are some practical difficulties in applying to CT
this mathematical solution to the idealized problem:

(a) Radon’s formula determines a picture from all its line integrals. In
CT we have only a finite set of measurements. Even if these were exactly the
projections along a number of straight lines, a finite number of them would
not be enough to determine the picture uniquely, or even accurately. Based
on the finiteness of the data alone one can easily produce objects for which
the reconstructions will be very inaccurate (see Section 15.4).

(b) The measurements in computed tomography can only be used to esti-
mate the line integrals. Inaccuracies in these estimates are due to the width
of the x-ray beam, scatter, hardening of the beam, photon statistics, detector
inaccuracies, etc. Radon’s inversion formula is sensitive to these inaccuracies.

(¢) Radon gave a mathematical formula; we need an efficient algorithm to
evaluate it. This is not necessarily trivial to obtain. There has been a very
great deal of activity to find algorithms that are fast when implemented on
a computer and vet produce acceptable reconstructions in spite of the finite
and inaccurate nature of the data. Much of this book is devoted to this topic.

Notes and References
The mathematical and computational procedures underlying CT as described

in this chapter are summarized in Fig. 2.5. Much of this material is based on
[111]. A more up-to-date coverage of CT can be found in [155].
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Fig. 2.5: Outline of the mathematical and computational procedures underlying CT.
{Reproduced from [111]. Copyright by the Institute of Physics.)

The three-dimensional displays in Fig. 2.1 were produced by the software
3D98 [261], which was probably the first software system for 3D display and
analysis that was integrated into a commercial CT scanner (namely the GE
CT/T 9800).

The discussion of traditional tomography is based on [100]; see also [253].
These papers contain further early references. A more recent sample reference
is [159] and a survey of relatively modern developments is given in [68].

The physics of x-ray generation and interaction with matter is discussed
in books on radiological physics such as [54].

For a more detailed discussion on the nature of algorithms in general
see, e.g., the relevant entries in [226]. A relatively recent book that discusses
reconstruction-related algorithms is [211].

The Radon transform was introduced in [225]; that paper contains a deriva-
tion of the inversion formula (2.5).
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