3

Physical Problems Associated with Data
Collection in CT

The main topic of this book is a discussion of the algorithms by which the
distribution of the relative linear attenuation at an effective energy €, namely
pe(x,y), is calculated from estimates of its line integrals along a finite num-
ber of lines. The measurements in CT are taken in order to estimate these
line integrals. In this chapter we discuss the physical limitations and prob-
lems that arise in estimating the line integrals from the calibration and actual
measurements. Except for the problems of photon statistics and beam hard-
ening, our discussion will be limited to a summary of the problems with some
indications on how their effects may be reduced. We also discuss the different
scanner configurations that are used in computerized tomography. In Chapter
5 we illustrate the effects on the quality of the reconstruction of the different
sources of error in the data collection.

3.1 Photon Statistics

A very basic limitation to the accuracy of measurements taken in CT is the
statistical nature of the process of x-ray photon production, photon interaction
with matter, and photon detection. We discuss these processes one by one.
Consider the experiment in which we count the actual number of photons
emitted in a unit period of time in the direction of a detector by a stable
x-ray source that emits on average A photons in a unit period of time in the
direction of the detector. Such an experiment gives rise to a discrete random
variable, which we denote by Y3 (see Section 1.2). The set Sy, of the possible
outcomes of the experiment consists of the nonnegative integers (the photon
counts). In this book we accept without further discussion the physical result
that
AYexp(—A)
In Fig. 3.1 we show the values of py, (¥) for y = 0,...,50 when (a) A = 5 and
(b) A = 25.

Py:(y) = (3.1)
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Fig. 3.1: Plots of the functions (a) py, and (b) pys, in (3.1).

Equation (3.1) is referred to as the Poisson probability law, and a discrete
random variable Yy satisfying it is called the Peisson random variable with
parameter A. We note three important properties of this random variable:

(i) its mean is A,
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3.1 Photon Statistics 39

(ii) its variance is A,

(iii) it is very similar to the Gaussian random variable X with mean A and
variance A, as defined by (1.10), provided that A is large (greater than
100), in the sense that, for any interval (e, b] such that b — a is a positive
integer, Py, (a,b] = Px(a,b].

This has important practical implications. Suppose, for example, that we
are interested in estimating A, the average number of photons emitted per
unit. time by a stable x-ray source in the direction of a detector. If we have a
way of counting all the photons reaching the detector, we may estimate A by
the count of the number of photons during a particular period of unit time
(i.e., by a sample of the random variable). If the true value of A is 10,000, then
there is at most a 1 in 20 chance that we make an error 200 (two standard
deviations) or more using this approach. (Recall from Section 1.2 that we
are 95% confident that the mean of a Gaussian random variable is within
two standard deviations of a random sample from it.) Alternatively, we may
count the number of photons for 100 units of time, and divide the count by
100 to give us an estimate of A. The total number of photons during this
longer period is on average 1,000,000, and in 19 cases out of 20, the actual
count will be between 998,000 and 1,002,000. So in 19 cases out of 20, the
estimate of A will be between 9,980 and 10,020; i.e., the error is 20 or less.
By increasing the time period used for counting photons by a factor of 100
we have reduced the size of the likely error in our estimate by a factor of 10.
We observe a similar phenomenon in the following when we discuss how the
accuracy of the calibration and actual measurements in CT is dependent on
the total number of x-ray photons used.

Now we look at the statistical nature of the interactions of x-ray photons
with matter. Suppose that a photon leaves the source in direction of the de-
tector along a line L (see Fig. 2.4). Then there is a fixed probability p that
the photon will get as far as the detector without being absorbed or scat-
tered. This probability depends on the energy of the photon and the material
intersected by the line L between the source and the detector. We call p the
transmittance along L of the material between the source and the detector
at that particular energy. If everything between the source and the detector
remains stationary for a period of time and during this time 10,000 photons
of the same energy leave the source in direction of the detector along the line
L, then the number of photons reaching the detector will be approximately,
but almost never exactly, 10,000p. The rest of the photons will be absorbed
or scattered.

A photon that reaches the detector is not necessarily counted. For each
energy, there is a fixed probability that a photon that reaches the detector is

ticular energy. Continuing with the case discussed in the previous paragraph,
the number of photons out of the original 10,000 that will not be absorbed
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or scattered and will be counted is approximately, but almost never exactly,
10,000p0. The following important statement is proved in Section 15.5.

Let A denote the average of the number of photons at energy € that are
emitted in one unit of time by a stable x-ray source along a line L in the
direction of a detector. Let p denote the transmittance along L of the material
between the source and detector at energy é. Let ¢ denote the efficiency of
the detector at energy €. Then the number of photons that

(i) are at energy €,
(ii) reach the detector without having been absorbed or scattered, and
(iii) are counted by the detector in one unit of time,

is a sample of the Poisson random variable with parameter Apo.

We are now in position to discuss what is being measured during the data
collection phase of CT, as described in Section 2.3. For this discussion we
assume that the x-ray beam is monochromatic, the x-ray source and detectors
are negligible in size (hence all photons from the source to the detector travel
in the same straight line), and that a photon that has been absorbed or
scattered along this line never reaches the detector. In subsequent sections
we talk about the errors introduced by the physical unattainability of these
assumptions.

Let us look at the exact nature of the process involved in getting the C,
and the A, of (2.2). Suppose that a monochromatic x-ray source of energy
€ is such that the fraction of emitted photons that leave in the direction of
the reference detector is ¢,, and the fraction of emitted photons that leave in
the direction of the actual detector is ¢q (see Fig. 2.4). Suppose further that
the averages of the total number of photons emitted during the periods of the
calibration and actual measurements are A. and A,, respectively. Let p, be the
transmittance at energy € of the material between the source and the reference
detector, and let p. and p, be the transmittance at energy € of the material
between the source and the actual detector during the calibration and the
actual measurement, respectively. Let o,., respectively o4, be the efficiency at
energy € of the reference detector, respectively of the detector.

Consider now how we get a value of C',. The actual number of photons
cmitted is a sample ¥, from Y, . The actual number of photons counted by
the reference detector is a sample ¢, from the binomial distribution with
parameters y. and ¢, p,c, and the actual number of photons counted by the
actual detector is a sample ¢, from the binomial distribution with parameters
Yo and ¢gp.cq. To avoid divisions by zero and (later on) having to take the
logarithm of zero, in the unlikely case that either ¢, or ¢, is 0, we set its value
to 1. Finally, we define C,, = ¢,/c¢,. This is quite a complicated sampling
process, especially since ¢, and ¢, are related to each other by the fact that
the binomial distributions from which they are picked have the parameter y.
in common, but this parameter itself changes from sample to sample.

Ignoring the full complexity of the statistics for the moment, let us argue
based just on means. The means of the binomial distributions with parameters
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Yo and ¢, p,o, and with parameters y. and ¢gp.cq are y.¢.pro, and y.0qp.04,
respectively. Hence, it is reasonable to claim that

G’m. = ';'bdpco—d/‘;brf)ra-r- (32)

By a completely analogous argument for the actual measurement process, we
obtain that

Ap @dﬂaﬁ'd/@r,ﬂw-ﬂ'r- (33)
Combining (3.2) and (3.3) with (2.2), we get that
m o —In(pg/pe) - (3.4)

In Section 15.2 we show that

D
~m? :f pelx,y) dz. (3.5)
Pe 0

This is why the monochromatic ray sum m can be used as an estimator to
f[;D pe(z,y)dz in an algorithm that calculates pz(x,y) at individual points
from the line integrals of pz(x,y) (see Section 2.6).

The important question is: How accurate an estimator is m of — In{p, /p.)?
As illustrated in Section 15.5, in a realistic CT situation, it can be assumed
that m is a sample of a random variable M such that

|Juf\.'1' + hl (ﬂu/f’c” =2 Sa {36)

and
VM = S, (37)

where
S = (C.bd)\apagd)_l =+ (d’r)‘ap'rga‘)_l T ((;“jd)‘cpcad)_l oE (f."ﬁ'r)\cpro-a‘)_l . (38)

If we can make this quantity S very small, then we ensure accurate estimation
of —In(pa/pc) by m.

Note that one way of making S very small is to make the number of pho-
tons leaving the source (A. and A,) large. Except for the problem of possibly
saturating the counting capability of the detectors there is no difficulty in
making A, very large, and thereby making the last two terms in S negligibly
small. In such a case we see that S becomes inversely proportional to A,.
Unfortunately, one cannot make the number of photons leaving the source
during the actual measurement arbitrarily large, since this would result in
an unacceptable radiation dose to the patient and may slow the process of
projection taking so that errors due to motion become important (see the
following). Note, however, that by ensuring that ¢, is much larger than ¢4
and that the transmittance p,. between the source and the reference detector
is relatively large (near 1), it is possible that we can also make the second
term (3.8) negligibly small. This leaves us with
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Sz l/ﬁbd/\apagd- (39)

which shows in particular that the error in our estimation of —ln(p,/p.) de-
pends on the transmittance p, during the actual measurement; lesser trans-
mittance results in greater error.

As can be seen from the preceding, a certain amount of error in the mea-
surements due to the statistical nature of the processes of x-ray photon pro-
duction, photon interaction with matter, and photon detection is unavoidable.
The properties of the error, considered as a random variable, are understood.
As we shall see, some reconstruction algorithms attempt to make use of these
propertics. Since the errors in the measurements affect the outcome of the
reconstruction process, it is important to understand both the nature of these
errors and the way in which the results produced by a given reconstruction
algorithm are influenced by such errors.

3.2 Beam Hardening

The x-ray beam used in CT is polychromatic, consisting of photons at different
energies. Because the attenuation at a fixed point is generally greater for
photons of lower energy. the energy distribution spectrum of the x-ray beam
changes (hardens) as it passes through the object. X-ray beams reaching a
particular point inside the body from different directions are likely to have
different spectra (having passed through different materials before reaching
the point in question) and thus will be attenuated differently at that point.
This makes it difficult to assign a single value to the attenuation coefficient
at a point in the body.

A possible solution to this difficulty is to assign to the point the attenua-
tion coefficient of photons at a particular energy (what we referred to as the
effective encrgy). If we used monochromatic x-ray beams consisting of photons
only at that single energy, beams from different directions would be attenu-
ated in the same way at a fixed point. Reconstruction of such attenuation
coefficients is a well-defined aim of computed tomography.

In this section we discuss mathematical formulas that describe the na-
ture of polychromatic ray sums and methods that may be used to find the
corresponding monochromatic ray sums. It is shown in Section 15.6 that the
polychromatic ray sum p approximates an integral of the form

E D
po~— ln/ Te XD —] (pe(z) — pl) dz | de. (3.10)
0 0

We now give a detailed explanation of the meaning of the symbols in (3.10).

It is assumed that the source emits a polychromatic x-ray beam with
photons at energies between 0 and F. We use 7. to denote the value at energy
e of the probability density function of the continuous random variable that
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describes the statistical distribution of the energies of the photons counted
during the calibration measurement. Here we have adopted the somewhat
nonstandard notation of using 7. to denote the value of a function of energy
at the energy e. We refer to this probability density function as the detected
spectrum during the calibration measurement.

The symbols D and z have the same meaning as in the last chapter (see
Fig. 2.4) and j1.(z) is a function of two variables (the energy e and the dis-
tance z), whose value is the linear attenuation coefficient at energy e at the
point z on the line L during the actual measurement. On the other hand, u¢
is a function of one variable only (the energy e), whose value is the linear
attenuation of the reference material o at energy e. Thus, _j"DU (fe(z) — pd) dz
is the integral of the relative linear attenuation at energy e along the line
L. Note, in particular, that the polychromatic ray sum depends only on the
relative linear attenuations (at all energies between 0 and E) and on the de-
tected spectrum during the calibration measurement. Rewriting (2.4) in this
notation we get =

m 2/ (e(z) — pg) dz. (3.11)
0

Recall now that CT numbers represent relative lincar atfenuations at the
effective energy &; and that they are to be obtained from estimates of the
monochromatic projection data, which are themselves calculated from the
experimentally obtained polychromatic projection data. The method of esti-
mating the monochromatic projection data from the polychromatic projection
data is the topic of the rest of this section.

We start with a theoretical discussion of a special situation. Suppose that
during the actual measurement there are only two types of material, ¢ and
b, in the reconstruction region (a is the reference material). Consider a fixed
source—-detector pair, and assume that the total length of the parts of the line
L that go through material b is B. From (3.10) and (3.11) we get

I
p~— lnf Teexp (=B (ub — u?)) de (3.12)
0
and
m~ B (pb— pug). (3.13)
Combining (3.12) and (3.13) we get
E [
p~— lnf Te €XP (—%m) de. (3.14)
0 Heg — Mg

The important thing to observe in (3.14) is that, provided either p? > p¢
for all energies between 0 and E or p® < u for all energics between 0 and E,
its right-hand side is a monotonic function of m. (Note that 7. is positive for
all e.) Hence, given any value of p, there is only one value of m that makes
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the two sides of (3.14) equal. In practice we can use the plot of the right-
hand side of (3.14) to correct for beam hardening; we simply find the value of
m for which the value of the right-hand side is the experimentally obtained
polychromatic ray sum p.

Equation (3.14) was obtained under the rather restrictive assumption that
there are only two different types of material in the reconstruction region. If
the organ we are looking at is a head inserted into a water bag, this assumption
is not too badly violated, since the contents of the head are bone and material
whose x-ray attenuation properties are not too dissimilar to water. Thus (3.14)
may be used for correcting for beam hardening in such a situation, but in
general it is not as good as some other methods to be discussed in the following.

While the precise method based on (3.14) must be considered to be un-
rcliable because of the too restrictive nature of the underlying assumptions,
the general approach suggested by it is very attractive: specify a function g of
the polychromatic ray sum p such that if we use ¢(p) as our estimate of the
monochromatic ray sum m, then we get reasonably good reconstructions of
the relative linear attenuations at the effective energy €.

Natural candidates for such a function are polynomials, i.e., functions of
the form

1

q(p) = anp™ + an_1p™" + -+ arp+ag, (3.15)

where n (the order of the polynomial) is a fixed integer and aq,...,a, are
fixed coeflicients that need to be determined so that ¢(p) provides an accept-
able estimate of m for our purpose. There are two computational advantages
of polynomial approximations to others (for example, approximation by com-
bination of exponentials): the coefficients are easy to calculate and, once they
are calculated, (3.13) is easy to evaluate, especially since a low value of n (less
than 5) usually suffices (see Section 5.6).

In certain cases there is no single function g such that replacement of m
by ¢(p) in (2.5) would lead to acceptable reconstructions. One is then forced
to use either multiple correcting functions specific to the source detector pair
positions or an iterative correction procedure, where the correcting function g
for the next iteration is based on a reconstruction during the previous iteration
(see Section 5.6).

3.3 Other Sources of Error

If we wish to base our reconstruction algorithm on (2.5), then we have to
know the values of m(!l,#) (the line integral of p:(x,y) along L, see Fig. 2.4)
for certain [ and € (i.e., for certain lines L). Photon statistics and beam hard-
ening are two reasons why physical measurements can provide us only with
approximations of m(l,#). In this section we briefly discuss further reasons.
One source of error is that both the x-ray source (more precisely the focal
spot of the x-ray source) and the detector have a certain size, and thus the
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Fig. 3.2: Illustration of the partial volume effect.

photons that are counted do not all travel along the same line, but rather they
travel along one of a bundle of lines forming a rather complicated shape.
One consequence of the non-negligible size of the focal spot and detector
is the so-called partial volume effect, which we now explain on a simple two-
dimensional example. Suppose we have a point monochromatic x-ray source
P and a line segment detector D; see Fig. 3.2. Suppose that the linear at-
tenuation coefficient (see Section 2.4) is everywhere zero except in that half
of the area A that is cross-hatched in Fig. 3.2, where its value is two. It is
assumed that the length of intersection with A of any line from P to D is
unity. Suppose also that the reference material has linear attenuation coef-
ficient zero (vacuum) and that the number of photons read by the reference
detector during both calibration and actual measurement is 1000. Hence the
number of photons that leave the source in direction of the detector is about
the same during calibration and actual measurement. Suppose this number
is 1,000,000. Thus the calibration measurement is Cp, ~ 1000. Breaking the
x-ray beam into two equal halves as shown in Fig. 3.2 we see that approx-
imately 500,000 photons will enter both halves of A. In the left half, where
the linear attenuation coefficient is zero and hence transmittance is one, all
500,000 photons reach the detector. In the right half, where the linear attenu-
ation is two, and hence transmittance is e~ ~ 0.135, the number of photons
that reach the detector is about 68,000. Hence the total number of detected
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photons is about 568,000 and the actual measurement is A,, =~ 568. Using
(2.2) we get m =~ 0.566. This is an estimate, see (2.4), of the average of the
line integral of the relative linear attenuation between the source and points
on the detector. However, it is easy to see that the true value of this average
is 1.0. The reason for this rather large error (43.4%) in the estimation of the
average is that the beam is only partially blocked by attenuating material and
the processes of taking exponentials and logarithms give a disproportionately
great importance to the unblocked portion of the beam.

In principle, one can reduce the size of the source and the detector by
putting lead shielding with long narrow pinholes in front of both of them, but
this would have two undesirable consequences. One is that the error due to
photon statistics would considerably increase, because the value of ¢4 in (3.9)
would become very small. The second consequence arises when we search for
possibly small features in large organs (such as tumors in the lung) by taking
cross-sectional slices. If the physical slices are thin, we have to use many
slices to ensure that we do not miss what we are looking for. This results in
longer time to be spent by the computer that provides the reconstructions
and possibly by the radiologist who needs to examine them.

We have just given one example of a phenomenon that is rather common
in CT: methods that can be used to combat error due to one physical phe-
nomenon result in increasing the error due to another one. A further example
of this is the way one handles motion artifacts.

It is an underlying assumption in CT that the m(!, #), which we try to mea-
sure, are integrals along different lines of the same function pi.(:x, v). However,
this assumption is violated if some of these lines L go through a moving organ,
such as the lung or the heart, and if the actual measurements are taken at dif-
ferent times for different lines, since the function pz{x, y) changes as the organ
moves. One way of combating this is to use multiple arrays of detectors and
possibly even multiple sources (more about this in the next section), so that
all the measurements can be taken within a small period of time during which
organ motion is insignificant. However, this results in an increase of error due
to detection of scaftered photons, a phenomenon that we now discuss.

Note that in Section 3.1 we have assumed that the detector counts a photon
only if it has left the source in the direction of the detector and has reached
the detector without having been absorbed or scattered. If there is a single
source and a single detector, this is a reasonable assumption, since a scattered
photon can reach the detector only if it has been scattered in a direction very
nearly the same as its original direction or if it has been multiply scattered
away from and then back towards the detector. These events are sufliciently
unlikely, so that the error due to scatter in a single source single detector case
is rather small. However, if we have an array of detectors, a photon scattered
out of its path towards one detector may very well reach another detector and
be counted by it. Since the ratio of scattered photons to unscattered photons
that reach a detector is dependent on the object to be reconstructed (and in a
rather complicated way), the error introduced by scatter cannot be completely
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removed from the measurements prior to reconstruction. Collimation, which
absorbs photons coming towards a detector from directions other than the
source, can reduce the number of scattered photons that are counted by the
detector.

Finally, we discuss some errors that are due to the device used for collecting
the data not functioning exactly as intended.

It is important that the source and the detectors do not change their
behavior between the calibration measurement and the actual measurement.
For example, in our derivation in Section 3.1 we have assumed that the effi-
ciency o4, of the detector is the same during the calibration and the actual
measurement. Change in detector efficiency would make (3.4) invalid.

Detector efficiency is assumed to be independent of the number of pho-
tons the detector has to count. This may be difficult to achicve in practice,
since detectors can be saturated by too many photons getting to them. One
way of combating this is by insertion of a compensator (see Fig. 2.4) that
ensures that even along lines that either miss or hardly touch the object to
be reconstructed, the total attenuation is significant cnough for the detector
not to get saturated. Alternatively, one can achieve this by using water as
the reference material into which one inserts the object to be reconstructed
during the actual measurement. One reason for preferring the former of these
two methods is that it requires less radiation dose to achieve the same pho-
ton statistics. (This is because in the latter option photons that have already
transited through the patient’s body may get absorbed and so not reach the
detector.)

Mechanical stability is also of importance; the lines along which data are
collected should be the same lines that the algorithms assume as the lines of
data collection.

There are other possible sources of errors in data collection, but their
discussion is beyond the scope of this book.

3.4 Scanning Modes

Figure 3.3 shows five classical designs that had been used by devices for data
collection in CT. While various variants of these scanning modes existed,
we restrict our attention to these five basic modes. We diseuss some of the
advantages and disadvantages of each from the point of view of their proneness
to the errors we have discussed in the previous section. This will be followed
by a discussion of the scanning mode that is considered state-of-the-art for
commercial scanners at the time of writing this revised edition.

In the first scanning mode, see Fig. 3.3(a), there is a single x-ray source
and a single detector. There are two motions involved. First, both the detector
and the source are moved in parallel in a direction perpendicular to the line
connecting the source to the detector. During this time projection data are
collected for one set of parallel lines. Second, the apparatus is rotated by a
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(c)

Fig. 3.3: Classical scanning modes in CT. (a) Pencil beam “incremental” scanner
(single source, single detector, translate-rotate). (b) Fan beam “incremental” scanner
(single source, multiple detector, translate-rotate). (¢) Fan beam “spinning” scanner
(single source, multiple detector, rotate only). (d) Fan beam “spinning” scanner
(single rotating source, stationary ring of detectors). (¢) Cone beam “cylindrical”
scanner (multiple source, multiple-planar detector).

small amount (e.g., 1°). By repetition of these two motions, data are collected
for a number (e.g., 180) of sets of parallel lines.

There are a number of attractive features of this method of data collection.
There is very little noise due to scatter. The detector can be calibrated at the
beginning of each of the parallel scans, since we can ensure that the first line of
a scan misses the reconstruction region. The source—detector combination can
be moved in small steps, ensuring that enough data are collected for recon-
struction. (There will be more about this in later chapters.) An undesirable
feature of this method of data collection is the time it takes; typically sev-
eral minutes. Such a scanning mode is inappropriate for imaging organs that
cannot. stay stationary for more than a few seconds, such as the lung.
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The second scanning mode in Fig. 3.3(b) was introduced to speed up the
data collection process without losing most of the desirable features of the first
scanning mode. Instead of one detector, an array of detectors is used (e.g.,
30). As the source and detector array move in parallel, data are collected
for several sets of parallel lines. When the apparatus is rotated, the rotation
can be by a much larger angle than in the first scanning mode (e.g., 10°),
and vyet the total number of sets of parallel lines is usually increased. Such
scanners can collect all their data in slightly over 10 seconds, an acceptable
breath holding period for most patients. Apart from increase in cost, the only
obvious disadvantage of this scanning mode over the first one is the increased
effect of scatter.

The third scanning mode in Fig. 3.3(c) involves only one motion. A single
x-ray source is faced by a large enough array of detectors so that the angle
subtended by the detector array at the source encloses the whole reconstruc-
tion region. The source and detector-array combination rotates around the
patient. The data are collected for a large number of sets of lines (typically of
the order of 500 sets with about the same number of lines in each); the lines
in each set diverge from the source position to the detectors in the array. All
data for one set are collected simultaneously. The complete data collection
can be achieved in a matter of seconds (typically five or less). One potential
problem with this arrangement is that calibration has to be done before the
patient is inserted for possibly a whole series of scans, since in all positions
of the apparatus the line between the source and the central detectors goes
through the patient. Very stable detectors seem to have overcome this dif-
ficulty. Also, the detectors have to be narrow so that sufficient amount of
data are collected for the reconstruction. This method of data collection was
standard for commercial CT scanners for about twenty vears from the late
1970s.

An alternative fast method of data collection, with only one motion, is the
fourth scanning mode in Fig. 3.3(d). A stationary array of detectors has the
x-ray source move inside it in a circle. The line from one of the detectors to
the source forms a diverging set of lines as the source moves. Calibration of
the detector for this set of lines is possible while the line from the detector to
the source is outside the reconstruction region. The number of detectors has
to be large compared with the previous scanning mode, unless one is willing
to have radiation that goes through the body but ends up between detectors.
The latter is undesirable, since the body is subjected to potentially harmful
radiation that does not contribute diagnostic information. Also, it is more
difficult to reduce scatter by collimation than in the previous scanning mode
since the direction from detector to source changes as the source moves.

None of these scanning modes is appropriate for precise imaging of a
rapidly moving organ such as the heart. Not only is the speed of data col-
lection far too slow (the heart goes through a whole cycle in about one sec-
ond), but also it is difficult to achieve a slice-to-slice coherence if the data are
collected at different times for each cross-sectional slice. The fifth scanning
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mode, Fig. 3.3(e), was designed to overcome these difficulties. An array of
x-ray sources (e.g., 28) is arranged in a semicircle. They can be electronically
switched on and off. They project the body onto a curved fluorescent. screen,
so that when an x-ray source is switched on a large part of the body (say the
whole thorax) is imaged simultaneously, providing us with projection data
for a cone beam of lines diverging from the source. It is possible to complete
the data collection in as little as one-hundredth of a second, removing any
possibility of organ motion interfering with the reconstruction process. Note
that this method of data collection is essentially different from the other four,
inasmuch as a series of two-dimensional projections of a three-dimensional
object is collected rather than a series of one-dimensional projections of a
two-dimensional object. While this arrangement solves the problems that mo-
tivated its introduction, it has its own special difficulties. For example, the
number of views that can be taken is severely limited both by the cost and
the size of the x-ray tubes, and the error due to scatter is unavoidably much
more significant than in the previous scanning modes. It is also very expen-
sive, especially if the whole sources—detectors combination needs to be rotated
around the patient for high spatial resolution in the reconstructions. For such
reasons, this scanning mode has not made it into clinical practice.

Fig. 3.4: Helical (also known as spiral) CT. ([llustration provided by G. Wang of the
Virginia Polytechnic Institute & State University.)
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Helical CT (also referred to as spiral CT) first started around 1990 and
has become standard for medical diagnostic x-ray CT. Typically such a gys-
tem is single source and multiple detectors (which were initially in a single
one-dimensional array as in Fig. 3.3(c), but then were replaced by detectors in
a two-dimensional array similar to the detectors in Fig. 3.3(e)); the innovation
over the previously mentioned scanning modes is the presence of an indepen-
dent motion: while the source detectors rotate around the patient, the table
on which the patient lies is continuously moved between them (typically or-
thogonally to the plane of rotation), see Fig. 3.4. Thus, the trajectory of the
source relative to the patient is a helix (hence the name “helical CT”). Helical
CT (especially in its cone-beam mode) allows rapid imaging as compared with
the previous commercially-viable approaches, which has potentially many ad-
vantages. One example is when we wish to image a long blood vessel that
is made visible to x-rays by the injection of some contrast material: helical
CT may very well allow us to image the whole vessel before the contrast
from a single injection washes out and this may not be possible by the slower
scanning modes. Since our mathematical and algorithmic development in this
book is mainly devoted to the reconstruction of two-dimensional slices from
one-dimensional projections (as in Figs. 2.4 and 3.3(c)), we do not get into
further discussion of helical CT here. We return to the topic in Chapter 13,
where we illustrate the data collection for a dynamically changing object us-
ing helical CT and an algorithm for reconstructing the object from such data.
We point out that the CT scanners illustrated in Fig. 1.4 are in fact modern
helical CT scanners, but at the level of detail of that figure they could just as
well be used as illustrations for the older fan beam spinning scanners whose
nature is indicated in Fig. 3.3(c).

There are many existing and possible variants of these scanning modes,
and many more advantages and disadvantages to each than we have space
to mention. However, the configurations discussed here include all the basic
arrangements that we need to consider when discussing reconstruction algo-
rithms.

Notes and References

Justification for using the Poisson probahility law to describe photon gener-
ation can be found in standard books, such as [77]. More detailed discussion
of the nature of Poisson random variables is also a standard topic; see, e.g.,
[217]. A recent paper discussing the noise properties of sinograms in x-ray CT
is [267].

The material on beam hardening is based on [111], which gives many early
references. An example of an iterative beam-hardening correction procedure
is given in [153]. A comparative study is reported in [141]. Examples of recent
developments on beam-hardening correction (from the nondestructive test-
ing literature) are [163, 264]. We return to this topic in Section 5.6. It was
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pointed out in [192] that general-purpose beam-hardening correction methods
may, under some circumstances, result in a so-called pseudo-enhancement,
which may result in an incorrect diagnosis. This clinically important issue
was subsequently addressed in a number of papers; a recent example is [209].
An alternative to correcting for beam hardening is to attempt to make use of
the nature of the x-ray spectrum. An early example of such an approach was
proposed in [7, 191]. For a much more recent approach see [222].

The shape of the x-ray beam in CT, and what one might do about the
errors introduced by it, is discussed in [26]. A discussion of the partial volume
is given in [95]. The nature of scatter and correction for it is dealt with in
[252]; see also |78].

The first commercially available CT scanner was manufactured by EMI
Ltd; see [146]. This scanner was of the type shown in Fig. 3.3(a). A scanner of
the type shown in Fig. 3.3(c) is reported on in [70]; see also [218]. A scanner of
the type shown in Fig. 3.3(e) is the dynamic spatial reconstructor (DSR) re-
ported on in [232] and its use for imaging physiological functions was detailed
in [231]. A table of the physical characteristics of the early commercial scan-
ners is given by [32]. Our classification of classical scanning modes is based
on that provided in [271].

A recent article on helical (spiral) CT is [266], it gives a good survey of
this very important development. A book that also deals with this topic is
[155]. Two early papers are [38, 156]. Sample papers that report on recent
technological and application developments of helical CT are [279] and [87],
respectively.

In this chapter, as indeed in the whole of this book, we have concentrated
on x-ray CT. Data collection in other applications of image reconstruction
from projections will have their own physical problems; for a recent example
see [22] that discuses a model of noise in low-dose electron microscopy.
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