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Computer Simulation of Data Collection in CT

While the aim of CT is the reconstruction of real ohjects from their actual x-
ray projections, the theoretical development of CT owes a lot to reconstruction
of mathematically described objects (phantoms) from computer simulated
projection data. The basic reason for this is that computer simulation enables
us to investigate individually various phenomena that cannot be separated
physically. For example, x-ray data always contain noise due to both photon
statistics and scatter, but simulation can indicate the specific separate effects
of noise and scatter.

Ag can be seen from the previous chapter, a software package capable of
realistic simulation of data collection using various scanning modes has to
be fairly complex. Nevertheless, a number of such packages have been writ-
ten. In producing many of the figures for this book we have made repeated
use of one of them, called SNARK09. (The name originates from the Lewis
Carroll nonsense poem entitled “The Hunting of the Snark.”) SNARKO09 pro-
vides a uniform framework for implementing reconstruction algorithms and for
evaluating their performance. All two-dimensional reconstruction algorithms
discussed in this book, as well as a number of others, are incorporated in it. In
this chapter we discuss the way SNARK09 creates test data for reconstruction
algorithms.

4.1 Pictures and Digitization

Tt is uscful at this stage to make precise a number of concepts we need in the
rest of this chapter and elsewhere in the book.
When we talk about a picture, we assume that it has two components:
(i) the picture region, which is a square whose center is at the origin of the
coordinate system;
(ii) a picture function of two variables whose value is zero outside the picture
region.

abris.nagy @science.unideb.hu



54 4 Computer Simulation of Data Collection in CT

Sometimes, when this leads to no confusion, we call the function in (ii) the
“picture.” However, identical functions may give rise to different pictures if
the picture regions are different. We often refer to the value of the picture at
the point (x,y) as the density at {x, y).

An n-element grid subdivides the picture region into n? equal squares.
Each of these smaller squares is called a pizel (short for picture element).

An n x n digitized picture is one whose value in the interior of any pixel of
an n-element grid is uniform. The n x n digitization of a picture is an n x n
digitized picture such that the integral of the original picture over any pixel
of an n-element grid is equal to the integral of the digitization over the same
pixel (see Fig. 1.1). In CT, the picture region is the reconstruction region and
the density of the picture at the point (z,%) is the relative linear attenuation
at the effective energy of the tissue at the point (z,y).

4.2 Creation of a Phantom

We now describe how a test phantom is created in SNARK09. A test phantom
is nothing but a picture on which we wish to test reconstruction algorithms
or data collection methods.

The phantom is put together by superimposing a number of elemental
objects, placed at desired positions, at desired orientations and of desired
size and density. The density of the elemental objects may be negative. The
density of the picture at any point is then defined as the sum of the densities
associated with all the elemental objects within which the point lies. To obtain
an estimate of the density within a pixel, the user specifies a number K, which
has the effect that the density within a pixel is determined by averaging the
values of the density at K x K uniformly-spaced points within the pixel. Thus,
the density assigned to a pixel can be expressed by the sum

J
e Z O 5y, (4.1)

where .J is the number of elemental objects in the phantom, d; is the density
of the jth elemental object. 4y ; = 1 if the kth of the K x K points in the pixel
is in the jth elemental object, and 6x ; = 0 otherwise. Note that the digitized
picture produced by this method is only an approximation to the digitization
of the phantom.

An elemental object in SNARKO09 may be a rectangle, an ellipse, an isosce-
les triangle, or a segment or a sector of a circle. The location of an elemental
object is described by five variables CX, CY, U, V, and ANG. For each type
of elemental object the explanation of these variables is given by Fig. 4.1. The
boundary of an elemental object is considered to be part of the object.
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Fig. 4.1: Elemental objects. In SNARKO09, an elemental object consists of both the
boundary and the interior of a rectangle, or an ellipse, or a triangle, or a segment
or a sector of a circle, respectively.
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4.3 A Piecewise-Homogeneous Head Phantom

A most important application to date of image reconstruction from pro-
jections has been in the area of diagnostic radiology. A region of the body for
which such procedures have been widely and successfully used is the head. For
this reason, all ideas and methods introduced in this book are demonstrated
on a typical eross scction of the human head, containing tumors, a blood clot,
ventricles and, of course, the skull enclosing the brain.

Our primary purpose is to introduce methods of image reconstruction from
projections and to illustrate how they perform under various circumstances.
Since we wish to control precisely the circumstances and to compare the results
of the reconstructions with a known original, rather than using an actual cross
section of a human head, we use a mathematically defined head phantom. In
this and in the next section we describe how we arrived at the head phantoms
that will be used repeatedly throughout the book.

We studied a cross section of a human head that was reconstructed by
CT (see Fig. 4.2). Based on this cross section we described a skull enclosing
the brain with ventricles, two tumors, and a hematoma (blood clot) using five
ellipses, eight segments of circles, and two triangles. The tumors were placed
so that they are vertically above the blood clot in the display. This facilitates
reporting on our results as will be seen later on. The positioning of these
ellipses, segments, and triangles is shown in Fig. 4.3.

Fig. 4.2: Central part of an x-ray CT reconstruction of a cross section of the head
of a patient. This served as the basis for our piecewise-homogeneous head phantom.
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Fig. 4.3: Outlines of the elemental objects that make up the piecewise-homogeneous
head phantom, with tissue type indicated for each object.

We assume that the reference material is air whose linear attenuation
coefficient can be taken to be zero for all energies. Hence the density of the
phantom at a point (x,y) is the linear attenuation coefficient at some fixed
energy of the tissue at (x,y). Table 4.1 gives the linear attenuation coefficients
of the various tissues in our head phantom at different energies. Table 4.2
gives a precise mathematical description of the location and densities of the
elemental objects in Fig. 4.3, assuming 60 keV photons.

We used SNARKO09 to obtain the density in each of 243 x 243 pixels of size
0.0752 cm with K = 11. The resulting array of numbers is represented in Fig.
4.4. The nature of this display deserves careful discussion. The densities given
to the elemental objects were such that the resulting values are the linear
attenuation coefficients at 60 keV of the appropriate tissue types measured
in cm™!. Thus the values range between zero (background, can be thought
of as air) and 0.416 (bone of the skull). However, the interesting part of
the picture is the interior of the skull. The values there range from 0.207
(cerebrospinal fluid) to 0.216 (metastatic breast tumor). The small differences
between tissues inside the skull would not be noticeable if we used black to

Table 4.1: Linear attenuation coefficients (in em™') as a function of photon energy
for tissues that occur in the piecewise-homogeneous head phantom.

brain metastatic cerebro-
energy (gray and breast chronic spinal
{(keV) Dbone white matter) carcinoma meningioma hematoma  fluid
41 0.999 0.265 0.284 0.269 0.266 0.260
52 0.595 0.226 0.237 0.227 0.228 0.222
60 0.416 0.210 0.216 0.213 0.212 0.207
84  0.265 0.183 0.186 0.187 0.184 0.181
100 0.208 0.174 0.175 0.176 0.175 0.171
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Table 4.2: Specifications of the elemental ohjects used to produce Fig. 4.4. The
densities are: bone in air (Object 1), brain in bone (Object 2), cerebrospinal fluid
in brain (Objects 3, 8, 10 and 12), carcinoma in brain (Object 4), meningioma in
brain (Object 5), hematoma in bone (Object 6), bone in hematoma (Ohject 7),
brain in cerebrospinal fluid (Objects 9, 11 and 13) and bone in brain (Objects 14
and 15). The word density here refers to differences of linear attenuation coeflicients
measured in cm ™! at 60 keV; in the polychromatic case, similar densities need to be
specified for all energies in the x-ray spectrum.

No. type CX CY U V ANG  density
1 ellipse 0.000 0.000 8.625 6.4687  90.00 0.416
2 ellipse  0.000 0.000 7.875 5.7187  90.00 -0.206
3 ellipse  0.000 1.500 0.375 0.3000  90.00 -0.003
4 ellipse  0.675 -0.750 0.225 0.1500 140.00 0.006
5 ellipse 0.750 1.500 0.375 0.2250  50.00 0.003
6 segment 1.375 -7.500 1.100 0.6250 19.20 -0.204
7 segment 1375 -7.500 1.100 4.3200 19.21 0.204
8 segment 0.000 -2.250 1.125 0.3750 0.00 -0.003
9 segment 0.000 -2.250 1.125 3.0000 0.00 0.003

10 segment -1.000 3.750 1.000 0.5000 135.00 -0.003
11 segment -1.000 3.750 1.000 3.0000 135.00 0.003
12 segment 1.000 3.750 1.000 0.5000 225.00 -0.003
13 segment -1.000 3.750 1.000 3.0000 225.00 0.003
14 triangle 5.025 3.750 1.125 0.5000 110.75 0.206
15 triangle -5.025 3.750 1.125 0.9000 -110.75 0.206

display zero, white to display 0.5 and corresponding grayness for values in
between. In order to see clearly the features in the interior of the skull, we use
zero (black) to represent the value 0.204 (or anything less) and 255 (white) to

Fig. 4.4: A piecewise-homogeneous head phantom.
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represent the value 0.21675 (or anything more). This way the small change in
density by 0.001 corresponds to a change of twenty in display grayness, which
is visible. We used this method to produce Fig. 4.4 and the displays of all
the reconstructions of the head phantoms used as illustrations in this
book.

4.4 Head Phantom with a Large Tumor and Local
Inhomogeneities

In Fig. 4.5(a) we show an actual brain cross section. The left half of the image
shows a malignant tumor that has a highly textured appearance. In order to
simulate the occurrence of a similarly textured object in our phantom we need
to use many additional elemental objects. This was done by adding to the list
of elemental objects (Table 4.2) that produced Fig. 4.4 a much longer list of
elemental objects, each coinciding exactly with a pixel; this resulted in the
phantom shown in Fig. 4.5(b). Because of the medical relevance of imaging
brains with such tumors, for the rest of this book we use the head phantom
with this tumor added to it. (Due to our display method, it seems that there
is a large range of values in the tumor. However, this is an illusion: the range
of values in the tumor is less than 7% of the range of values in the picture
that is displayed in Fig. 4.4. Another way of saying this is that the range of
the difference between the pictures represented by Figs. 4.4 and 4.5(b), is less
than 7% of the range within either of those pictures.)

(b)

Fig. 4.5: (a) An actual brain cross section with a tumor. (Image is reproduced, with
permission, from the Roswell Park Cancer Institute wehsite.) (b) The head phantom
of Fig. 4.4 with a “large tumor” added to it.
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(a) (b)

Fig. 4.6: Head phantoms with local inhomogeneities. (a) ox = 0.0025. (b) ox = 0.01.

One problem with the phantoms as defined so far is that a brain is far from
being homogeneous: it has gray matter, white matter, blood vessels and cap-
illaries carrying oxygenated blood to and deoxygenated blood from the brain,
etc. This is even more so for hone, whose strength to a large extent is derived
from its structural properties (it is more like the Eiffel tower than a mono-
lith of solid stone). There are methods that can obtain remarkably accurate
reconstruction of piecewise homogeneous objects, but their performance may
not be medically efficacious when applied to CT data from real objects with
local inhomogeneities. So as not to fall into the trap of drawing too optimistic
conclusions from experiments using piecewise homogeneous objects, we super-
imposed on our head phantom a random local variation that is obtained by
picking, for each pixel and for each energy level, a sample from the Gaussian
random variable X with mean p#x = 1 and a variance Vy that reflects the
level of local inhomogeneity present in our object (see (1.10)) and then mul-
tiplying the previously estimated lincar attenuation coefficient at that energy
level with that sample. In Fig. 4.6 we show the results of this for 60 keV for
two different values of ox = +/Vx. The value that we use for the phantoms
in the rest of this book is ox = 0.0025, shown in Fig. 4.6(a).

4.5 Creation of the Ray Sums

The simulation of the data collection in SNARKO09 is based on (2.3):

p=—In(4,/Cy). (4.2)
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We first discuss how the calibration measurement €, is calculated. If is
given by
C,=0Cy/C,, (4.3)

where C is the number of photons counted by the detector under consider-
ation and C, is the number of photons counted during the same period by a
reference detector. As discussed in Section 3.1, both Cy and C). are samples of
Poisson random variables, which can be approximated by Gaussian random
variables if their means are large. In SNARKO09 it is assumed that Cp and
C' are samples of the same Gaussian random variable (with a user-provided
mean), and so the expected value of CY, is one. In fact, if the user of the pro-
gramming system requests the simulation of the physically unattainable case
of no error due to photon statistics, the value of Cp, is taken to be exactly one.
Otherwise, a random number generator is used to produce Cp and C;.

A subtle point is that, except in the case of the fifth scanning mode (Fig.
3.3(e)), Cp is not to be calculated separately for each source-detector pair.
This is because of the way calibration is done in the different scanning modes
(see Section 3.4). In the first two scanning modes (Figs. 3.3(a) and (b)), C} is
the same for all source—detector pair positions that are used to obtain data for
one set of parallel lines. Similarly, in the fourth scanning mode (Fig. 3.3(d)),
', is the same for all lines that diverge from the same detector as the source
moves. The situation with the third scanning mode is essentially different: C),
18 the same for all lines that connect the source to a particular detector as the
apparatus moves. All these lines are tangential to the same cirele, and this
may cause a ringlike feature to appear in the reconstruction if an error has
been made during the calibration measurement. (This artifact can be observed
in Fig. 4.2, which was produced by an early CT scanner.)

We now turn to how the actual measurement A, is calculated. It is given
by

Ap = Ao/Ar, (4.4)

where Ay is the number of photons counted by the detector under consid-
eration and A, is the number of photons counted by the reference detector.
Again A, is taken to be a sample of a Poisson random variable with a user-
provided mean, say A. The calculation of Ay is more complex since it is during
this calculation that SNARKO9 introduces polychromaticity, the shape of the
x-ray beam, and scatter.

In order to understand this clearly, we have to go back to the way we create
a phantom (Section 4.2). The phantom is put together from a number of ele-
mental objects each with an associated density. Since the phantom represents
the distribution of relative linear attenuation at a fixed energy, we need only
one density associated with each elemental object. If we want to represent
the relative lincar attenuation at a different energy, we need to use different
densities for the elemental objects. In order to describe the interaction of a
polychromatic x-ray beam with the phantom, densities for all energies in the
beam need to be given.
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SNARKO09 solves this problem as follows. It assumes that the x-ray spec-
trum is discrete; i.e., it consists of a mixture of photons that are of one of
a finite number of different energies. For each energy the user has to specify
the percentage of photons at that energy (based on the detected spectrum
during the calibration measurement, see Section 3.2) and the density at that
energy of all the elemental objects. (In general, the user also needs to specify
the absorption properties of the reference material at the different energies,
but since in our example the reference material is air we do not dwell on the
details of this point.)

Since the density (in our case: relative linear attenuation at a fixed energy)
at a point is the sum of the densities of all the elemental objects within which
the point lies, the integral of the density along a line L is the sum over all
clemental objects of the products of the length of intersection of L with the
elemental object and the density in the elemental object.

Assume for now that we have a point source, a point detector, with a line
L between them, and no scatter. Then (3.10), when combined with (4.2) and

(4.4), yields
B D
Ay =~ )\/ Te €Xp (—/ (pe(z) — p2) dz) de, (4.5)
0 0

where we have made use of the assumptions that the expected values of Cp, and
A, are 1 and A, respectively. In SNARKO09, the expression on the right-hand
side of (4.5) is evaluated as follows.

Let I be the number of discrete energy levels and J be the number of
elemental objects. Let d;; be the density of the jth elemental object at energy
level 4, let £; be the length of intersection of the line L with the jth elemental
object (£; may be 0), and let ¢; be the probability that a photon counted
during the calibration measurement is at energy level ¢ (these probabilities
are user specified). Then Ag is taken to be a sample of a Poisson random
variable with mean

I J
)\Z f; exp *ijdf',@ . (46)
i=1 j=1

If the user wishes to simulate the physically unattainable case of no photon
statistics, SNARKO09 scts A equal to the value provided by (4.6). To simulate
the shape of the x-ray beam, SNARK09 calculates Ag as the weighted average
of the values of (4.6) for a number of different lines between the source and
the detector.

To simulate scatter, SNARKO9 replaces the value A for a detector position
by a weighted average of the values of Ay for that detector position and the
neighboring detector positions. The scatter contribution of a detector position
to another one is assumed to depend only on the distance between the two
detector positions. Mathematically, we express this by saying that the values
Aqg with scatter taken into consideration are obtained by convolution of the
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values of Ay without scatter and a ftixed scatter function. (The notion of
convolution, which is essential for some of the reconstruction algorithms, is
explained in Section 8.1.) This maodel for the scattering process is a very much
simplified version of what really happens; scatter simulated by SNARKO09
resembles true physical scatter only in its gross characteristics.

In the next chapter we give examples of how SNARKO09 simulates the
different processes just described and of the effects of these processes on the
quality of the reconstruction.

4.6 Fast Calculation of a Ray Sum for a Digitized
Picture

As long as the number J of elemental objects composing a phantom is not
particularly large, evaluating a formula such as the one that oceurs in (4.6)
is not computationally demanding: for each line, we loop through all the el-
emental objects j, and using the location and shape of the elemental object
we calculate the length £; of the intersection of that line with that elemental
object. However, the situation changes essentially by the introduction of local
inhomogeneities. Mathematically, the introduction of local inhomogeneities
can be thought of as just the introduction of extra elemental objects, one per
pixel, with densities assigned to them that represent the calculated inhomo-
geneities at those pixels in the phantom, as described at the end of Section
4.4. However, the number of pixels tends to be large (in our head phantom
it is 59,049) and to loop through all of them for each line would result in a
considerable computational burden.

Fortunately, there is an alternative. Using an approach often referred to
as a digital difference analyzer (DDA, for short), one can rapidly obtain, for
each line, the location of all the pixels intersected by that line and the lengths
of those intersections. Then the inner sum in (4.6) can be rapidly evaluated
using only those pixels that are intersected by the line. Since typically only
a small fraction of pixels is intersected by any line, this results in a very
significant computational speedup. The same idea can be, and is, used in the
implementation of the so-called series expansion reconstruction algorithms,
discussed later in Section 6.3 and, in more detail, in Chapters 11 and 12.

The idea of a DDA for locating for a line L the pixels that are interscected
by L and the lengths of the intersections is described in Fig. 4.7. Let us denote,
as in Fig. 2.4, by # the angle that L makes with the y (vertical) axis. We make
two nonessential assumptions to simplify the presentation of the idea behind
the DDA it is easy to work out how the details of our presentation need to be
changed if these nonessential assumptions are not satisfied. The assumptions
are that 0 < tanf < 1 and that the point b where L “first” intersects the
picture region lies on the top horizontal edge.

Given geometrical information about the location of the line, we can easily
calculate the coordinates of the point . We denote the length of a side of a
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Fig. 4.7: A digital difference analyzer (DDA) for lines.

pixel in Fig. 4.7 (and hence also the distance between b and ¢, between d and
e, between | and g, and between b and ) by 4. Let us abbreviate §tané by
7 and d/cosé by A. Note that in Fig. 4.7, 7 is the distance between ¢ and
d, hetween e and f, between g and h, and hetween ¢ and j, while A is the
distance between b and d, between d and f, between [ and h, and between h
and 7. In fact, A is the length of intersection of L for four ocut of the six pixels
that L intersects.

The control of the DDA is achieved by using a variable x such that 0 <
x < &, which is initialized to be the distance between a and b. The DDA lists
one-by-one each intersected pixel P, together with the length of intersection
[(P). The first P is the one that contains b.

The whole process can be understood by considering the general case of
having a current value for y and for P. We distinguish between two possibili-
ties, and in either case the amount of computing that needs to be done is very
little:

(i) x +7 < 4. In this case I[(P) = A, x is replaced by x + 7 and P is replaced
by the pixel below it. The process stops if there is no such pixel.

(ii) x +7 = §. In this case {(P) = /\5%‘ and P is replaced by the pixel to
the right of it. The process stops if there is no such pixel. For this new P,
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(P) = /\K'f—_‘g. Now y is replaced by ¥ + 7 — ¢ and P is replaced by the
pixel below it. The process stops if there is no such pixel.

Unless the process has stopped due to the nonexistence of a looked-for pixel,
we are now back to the general case and the same two possibilities are consid-
ered again. Clearly, the total process can be programmed in a very efficient
manner.

Notes and References

SNARKO(9 is described in detail in [61].

The linear attenuation coefficients of the various tissue types (except for
bone) at the different energies were estimated from the values published by
[219]. Values for bone were estimated based on the assumption that it is a
mixture of calcium and fat.

Head phantoms, which are less realistic than the one discussed in Section
4.2, were proposed in [138] and [241]. The latter of these is usually referred to
as the Shepp-Logan head phantom and it has been extremely widely used for
evaluating reconstruction algorithms. Nevertheless its use for this purpose is
not really advisable, since it lacks anatomical features (such as nearly straight
edges of bones) that are likely to deteriorate the clinical usefulness of re-
constructions. Many dozens of mathematically described phantoms of various
parts of the human body have been proposed since these early works, much
of it on the Internet. A particularly rich source of phantoms was produced by
FORBILD (the Bavarian Center of Excellence for Medical Tmaging and ITmage
Processing), see http://www.imp.uni-erlangen.de/phantoms/.

The exact method for creating the “large tumor” of Fig. 4.5(b) is described
in [121]. This large tumor also happens to be a ghost (as defined in Section
15.4); it is invisible for 22 projection directions.

A pioneering DDA-based practical algorithm for drawing lines using a dig-
ital plotter is due to Bresenham [30]. Both DDAs in general and Bresenham’s
algorithm in particular are referred to in a considerable body of literature; a
relatively recent example is [66].
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