6

Basic Concepts of Reconstruction Algorithms

With this chapter we begin our systematic study of reconstruction algorithms.
We introduce the notation used in the rest of the book. We categorize recon-
struction methods into two groups: transform methods and series expansion
methods. We explain the nature of the algorithms in the two groups and
indicate the desirable characteristics of reconstruction algorithms.

6.1 Problem Statement

Until now we have always used rectangular (Cartesian) coordinates for de-
scribing a function of two variables. Thus, we have used pz(z,y) to denote
the relative linear attenuation at the point (z,y), where (x,y) was in refer-
ence to a rectangular coordinate system, see Fig. 2.4. However, in the more
mathematical work that follows it is more convenient to use polar coordinates
(7, ¢), which are related to the rectangular coordinates {(x,y) by the formulas
r=+/22+12, ¢ =tan"'(y/x), * = rcos@, y = rsin¢. We use the phrase a
function of two polar variables to describe a function f whose values f(r, ¢)
represent the value of some physical parameter (such as the relative linear
attenuation) at the geometrical point whose polar coordinates are (r, ¢). The
mathematically distinguishing feature of a function f of two polar variables
is that f(0,¢1) = f(0,¢2), for all values of ¢ and @2. This reflects the fact
that the physical parameter represented by f can have only one value at the
origin. Furthermore, we do not restrict the domain of the polar variables, that
is, we allow r and ¢ to have any real values; hence a function f of two polar
variables must also satisfy the condition f(r,@) = f(—r,0 + 7).

In Section 4.1 we have defined a picture as a function of two variables whose
value is zero outside the picture region, which is a square (of size vV2E x v/2E,
say) whose center is at the origin of the coordinate system. In what follows,
we use f to denote the function of two polar variables » and ¢, which is used
to define the picture to be reconstructed. We know that
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102 6 Basic Concepts of Reconstruction Algorithms
f(r,¢) =0, if |rcos¢|>E/V2 or |rsing| > E/V2. (6.1)

In particular, f(r,¢) =01ifr > E.

A possible physical interpretation of the picture function f is that the
picture region is the reconstruction region of Fig. 2.4 and f(r, ¢) is the relative
linear attenuation at the point (r, ¢). The remaining discussion is independent
of such an interpretation. Reconstruction algorithms are applicable whatever
physical property f(r,¢) is supposed to represent (see Section 1.1).

One important difference between studying f simply as a function and
studying it as a representation of the distribution of some physical property
is the way the mathematics is handled. Reconstruction algorithms are often
based on mathematical theorems of the form: “If f has the property that
..., then ... " We do not hesitate to use the conclusion of such a theorem,
whenever the premise appears to be reasonable on physical grounds.

In particular, we shall not hesitate to assume, whenever needed, that pic-
tures satisfy certain integrability conditions. (We use integrals without precise
definition. While just about all that we say is valid for any standard definition
of an integral; those who wish to make our approach mathematically water-
tight should use integrals in the sense of Lebesgue.) One of our assumptions
is that any picture function f is square integrable; i.e., that

/z i S ) v dg (62)

exists. (Existence here means that the integral can be evaluated and its value
is a real number.) It follows from this assumption that, for any two picture
functions f; and fs, the distance

I T
d(fl,fz)—w ] ] (F1(r, @) — Falr )2 rdr d, (6.3)

between them also exists. Clearly, (6.3) is related to the picture distance mea-
sure defined by (5.1).

We now define the Radon transform of a function f of two polar variables.
First we introduce a notational convention that is used throughout the hook.
The Radon transform is an example of an operator; when acting on a function
it produces another function. We use capital script letters to denote operators;
for example, we use Z to denote the Radon transform. If' f is a function, then
the function that is its Radon transform is denoted by Zf. The value of % f
at a point (¢,¢) in its domain is denoted by [Zf] (£,¢) . The Radon transform
of f is defined for real number pairs (£, 6) as follows:

OO

[%ﬂ(ﬂm::/ f(Vﬁ+zae+tmfwyayu,ﬁe¢u,

N (6.4)
12£1(0,6) = | f(2,0+7/2)dz

J =00
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6.1 Problem Statement 103

Observing Fig. 2.4, we see that [Zf] (£,¢) is the line integral of f along the
line L. (Note that the dummy variable z in (6.4) does not exactly match the
variable z as indicated in Fig. 2.4. In (6.4) z = 0 corresponds to the point
where the perpendicular dropped on L from the origin meets L.) The existence
of the Radon transform for any ¢ and @ is another one of our integrability
assumptions.

Observe that

(1) (6,6) = (Rf] (~6,0 + ) = 1] (¢,6 + 27) (6.5)
and that, as a consequence of (6.1),
Zfl,e)y=0, if |{=E. (6.6)

In view of these equations, the function Zf is completely determined by its
values at the points (£,0) with —E < /< EFand 0 <60 <7 .

There is an important difference between the domains of the functions
f and Zf. The picture function f is defined for pairs of real numbers (r, ¢),
which represent the polar coordinates of points in the plane. Hence the value of
f(0, ¢) is the same for all values of ¢, since (0, ¢) always represents the origin.
This is not the case for % f. Its value for the pair (0,4) is the line integral of
f along a line through the origin making an angle ¢ with the positive y axis.
Hence, unless f is circularly symmetric about the origin, [# f](0, 8) depends on
6. The pair of real numbers (£, ) in the domain of Zf is not to be interpreted
as polar coordinates of a point in the plane.

Roughly speaking, the operator # associates with a function f over the
(r, ¢) space another function Z f over the (£, ¢) space. We can think of a single
point in the (£, 8) space as corresponding to a line L (at a distance £ from the
origin making an angle # with the positive y axis) in the (r,¢) space, since
[Zf](£,0) is the integral of f along L.

To further emphasize the relationship between the two spaces consider Fig.
6.1. Tt shows the loci in the (¢,6) space of the points corresponding to two
sets of lines in the {r, ¢) space: (i) a set of parallel lines and (ii) a set of lines
going through a fixed point.

Consider first the line K that makes an angle # with the baseline B (the
positive z axis) in Fig. 6.1(a). Any line perpendicular to K makes an angle
¢ with the positive y axis. Hence the locus of the set of points in the (£,8)
space that corresponds to lines perpendicular to K is the straight line § = #';
see Fig. 6.1(h).

Consider next the point (r, ¢) in Fig. 6.1{(a). The distance ¢ from the origin
of the line through it that makes an angle ¢ with the positive y axis is

£ =rcos(d — ¢). (6.7)

Hence the locus of the set of points in (£,8) space that corresponds to lines
through the point (r, ¢) is the curve whose equation is (6.7), see Fig. 6.1(h).
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104 6 Basic Concepts of Reconstruction Algorithms
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Fig. 6.1: The relationship between the (r, ¢) space and the (£,8) space. (a) In the
(7, @) space, K is the line through the origin O making an angle (' with the baseline
B. The point (r,¢) is considered given and L is the line through (r, ¢) orthogonal
to K. L meets K at the point P, which is at a distance £ from O. (b) In the (£,8)
space, the points that correspond to the lines perpendicular to / in the (r, ¢} space
lic on the straight line @ = ¢'. The points that correspond to the lines through (r, ¢)
in the (r, ¢) space lie on the sinusoidal ¢ = rcos(6 — ¢). The point corresponding to
L, namely (£.8"), is the intersection of these two curves. (Reproduced from [115],
Copyright 1981.)

The point in (£, 8) space that corresponds to the line L that is both per-
pendicular to K (and so makes an angle # with the positive y axis) and goes
through the point (r, ¢) is the point (¢',6) = (r cos(¢' — ¢),0").

The input data to a reconstruction algorithm are estimates (based on
physical measurements) of the values of [Zf](£, #) for a finite number of pairs
(£,0); its output is an estimate, in some sense, of f. The main purpose of this
chapter is to make this brief description precise.

Suppose that estimates of [%f](£,0) are known for I pairs: (#1,61),...,
(£;,8f). For 1 < < I, we define %, f by

i = |Rf] (4, 60)- (6.8)

Z#; 1s a functionel; when acting on a function, it produces a real number.
In what follows we use, unless otherwise stated, w; to denote the available
estimate of %;f and we use y to denote the T-dimensional column vector
whose ith component is y;. We refer to the vector y as the measurement
vector.
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Fig. 6.2: The locations in the (£, ) space of the points that correspond to lines for
which measurements have been collected in the parallel mode of data collection. It
is assumed that a single source and a single detector move parallel to each other in
2N 41 steps of size d, with Nd > E, the radius of the circular region containing the
object to be reconstructed. After the data have been collected for these 2N 41 lines
{one view), the whole apparatus is rotated by an angle A, and the data are again
collected for the 2N +1 lines of the next view. This is repeated for a total of M views,
where M A = w. Thus, for a complete set of views, the apparatus rotates around to
nearly cover a semicircle. A typical point in the (¢,8) space is (nd, mA), which lies
in the intersection of two straight lines £ = nd and 8 = mA, with —N <n < N and
0<m < M — 1. (Reproduced from [115], Copyright 1981.)

When designing a reconstruction algorithm we assume that the method of
data collection, and hence the set {(#1,81),....(#1,85)}, is fixed and known.
Roughly stated, the reconstruction problem is

given the data y, estimate the picture f.

In the next two sections we discuss the basic approaches for estimating f. We
shall usually use f* to denote the estimate of the picture f.

#; f is the value of Z f at the point (£;, 8;) in the (£, 8) space. Any geometry
of data collection provides us with a finite set of points (¢;, ;) at which an
estimate of 4, f is known. For example, Fig. 6.2 shows the arrangement of
such points (£;,0;) for the parallel modes of data collection shown in Figs.
3.3(a) and (b); this arrangement forms a rectangular grid. The corresponding
arrangements for the divergent modes of data collection (Figs. 3.3(c) and (d))
are more complicated; they are discussed in Chapter 10.
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106 6 Basic Concepts of Reconstruction Algorithms

6.2 Transform Methods

One way of defining the estimate f* of f is to give a formula that expresses
the value of f*(r,¢) in terms of r, ¢, ¥y, ..., yr. Such a formula may be a
“discretized” version of a Radon inversion formula, which expresses f in terms
of its Radon transform % f. We refer to reconstruction methods based on such
an approach as transform methods. In the rest of this section we give a more
detailed explanation of what has been said in this paragraph.

The Radon transform associates with a function f of two polar variables
another function Z f of two variables. What we are looking for is an operator
Z~', which is an inverse of # in the sense that Z~'%Zf is f (i.e., Z!
associates with the function #f the function f). Just as (6.4) describes how
the value of Zf is defined at any real number pair (£,#) based on the values
f assumes at points in its domain, we need a formula that for functions p of
two real variables defines %~ 'p at points (r,¢). Such a formula is

1

. ‘,_1]‘“[5 :
|% " p| (r,0) = on? . | L reos(@—g) fpl(ﬁ, d) déde, (6.9)

where p; (£, #) denotes the partial derivative of p(¢, ) with respect to £; it is
of interest to compare this formula with (2.5). We prove in Section 15.3 that,
for any picture function f of two polar variables (satisfying some physically
reasonable conditions), Z 1% f = f, in the sense that, for all points (r, ¢),

%1% f) (r, ) = £(r,9). (6.10)

In order to understand the nature of the operator 27!, we express it as a
sequence of simpler operators.

We use Py, to denote partial differentiation with respect to the first vari-
able of a function of two real variables. Thus, for any function p of two real
variables and for any real number pair (£, 8),

[Dyp](6,68) = lim PE+A606) = p(t.6)

A0 Al ' (6eLL)

assuming of course that the limit on the right-hand side exists.

In our application, the function p that is operated on by %y is the Radon
transform of a picture. It is quite easy to describe pictures f such that Py Zf
is not defined for all (£,#). An example is the picture that has value one
everywhere inside the picture region. There are mathematically rigorous ways
of extending the definition %y, so that it makes sense even in such cases. Here
we simply assume that for any picture f that we may wish to reconstruct, the
right-hand side of (6.11) is defined for p = Z .

The next operator we wish to define is the Hilbert transform #¢-q with
respect to the first variable of a function ¢ of two variables. For any real
number pair (£,8), we define
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6.2 Transform Methods 107

ran o L1 7 all,8)
A0 =1 /_ A (6.12)

Note that this is an improper integral since its integrand becomes infinite at
£ =/ Tt is to be evaluated in the Cauchy principal value sense; i.c.,

[#ra] (¢,6) = _% liny ( / %({762 dé + ff ‘f;f‘ig ace) (6.13)
£— i e

In our application, g is %y % f for some picture f. We again assume that for
pictures that we wish to reconstruct the limit on the right-hand side of (6.13)
exists.

Finally, we introduce an important operator called backprojection. Given
a function t of two variables, 28t is another function of two polar variables,
whose value at any point (r, ¢) is defined by

[Bt] (r, ) = /(; "t rcos(6 — 8),8) dé. (6.14)

Observing Fig. 6.1(b), we see that the value at point (r,¢) of the backpro-
jection of a function ¢ is obtained by integrating ¢ on a segment of the curve
(from @ = 0 to & = ) whose equation is (6.7).

The reason for the name backprojection is the following. Look at the line
K in Fig. 6.1(a). It makes an angle # with the positive x axis (the baseline B).
The “projection” of a function of two variables onto the line K is the function
of one variable obtained from the line integrals of f along lines perpendicular
to K. In other words, it is [# f] (£,8’), considered as a function of £ alone. The
line L that goes through a point (r,¢) and is perpendicular to K meets the
line K at a point P that is at a distance £ = rcos(’ — ¢) from the origin.

Now consider the reverse process. Rather than producing Zf from f by
integrating (projecting) along lines such as L, produce from a given function ¢
of two variables another function %t by spreading (backprojecting) the values
of ¢ along such lines. For a fixed ¢ (determining the line K), the contribution
of t to 9t is the same for all points (r, ¢) lying on the same line L perpendicular
to K and the value of this contribution is proportional to #(¢',8"), where ¢
is the distance of L from the origin. More precisely, given a point (r, ¢), we
evaluate the value of %t at (r,¢) by summing up (integrating), as ¢ varies,
the values of #(¢',#") for the # that is the distance of the line L from the
origin. Since L goes through (r, ¢) and K goes through the origin, the locus
of the points P where these perpendicular lines meet as € varies is the circle
with its diameter from the origin to the point (r, ¢).

Combining (6.11), (6.12), and (6.14) we get that, for a function p of two
variables and for any point (r, ¢),

B2, Pom] (5 o p1(4,0) p
BA Drp| (r, &) = / ] i, (6.15)
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108 6 Basic Concepts of Reconstruction Algorithms

The identity, except for a multiplicative constant, of the right-hand sides of
(6.9) and (6.15) can be concisely described by stating the operator equation:

1

Rl =—
27

B Py (6.16)

In words, the inverse Radon transform #~1p of a function p of two vari-
ables can be obtained by the following sequence of operations:

(i) partial differentiate p with respect to its first variable to obtain a function
g,

(i) Hilbert transform ¢ with respect to its first variable to obtain a function
2

(iii) backproject ¢, and

(iv) multiply the value of the resulting function by —(1/27). This is sometimes
called normalization.

Such a process assumes that the exact values of p(£, #) are known for all £ and
f# and that the required operations can be carried out precisely. Neither of these
assumptions is satisfied when we use a computer to estimate a function from
its experimentally obtained projection data. Transform methods for image
reconstruction are based on (6.16), or on alternative expressions for the inverse
Radon transform %', but they have to perform on finite and imperfect
data using the not unlimited capabilities of computers. How this is done is
explained in the following chapters. The essence of what needs to be done is
to find numerical procedures (i.e., ones that can be implemented on a digital
computer), which estimate the value of a double integral, such as appears on
the right-hand side of (6.9), from given values of p(¢;,8;), 1 <i <1I.

6.3 Series Expansion Methods

In the approach to the image reconstruction problem that is summarized in
the preceding section, the techniques of mathematical analysis are used to
find an inverse of the Radon transform. The inverse transform is described
in terms of operators on functions defined over the whole continuum of real
numbers. For implementation of the inverse Radon transform on a computer
we have to replace these continuous operators by discrete ones that operate
on functions with a finite number of arguments. This is done at the very end
of the derivation of the reconstruction method.

The series expansion approach is basically different. The problem itself is
discretized at the very beginning: estimating the function is translated into
finding a finite set of numbers. This is done as follows.

For any specified picture region, we fix a set of J basis functions {b1,....b;},
each of which is a picture function with the specified picture region. These
ought to be chosen so that, for any picture f with the specified picture region
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6.3 Series Expansion Methods 109

that we may wish to reconstruct, there exists a linear combination of the basis
functions that we consider an adequate approximation to f.

An example of such an approach is the n x n digitization discussed in
Section 4.1. In that case J = n?. We number the pixels from 1 to .J, and
define

(6.17)

o J 1, if (r, ) is inside the jth pixel,
bj(r,¢) = {U, otherwise.

Then the n x n digitization of the picture f is the picture f defined by
i J
f(r,¢) = Z"r.‘?bj (r:9), (6.18)
j=1

where x; is the average value of f inside the jth pixel. A shorthand notation
we use for equations of this type is f = Z;I:.l xjb;. Note that since the values
of f are linear attenuation coeflicients that have dimensionality inverse length
as shown in Section 15.1, the dimensionality of each x; is inverse length, while
the b; are dimensionless.

There are other ways of choosing the basis functions; some of these are
discussed later on. Once the basis functions are fixed, any picture f that can
be represented as a linear combination of the basis functions b; is uniquely
determined by the choice of the coefficients z;, 1 < j < J, in the formula
(6.18). We use = to denote the column vector whose jth component is z; and
refer to x as the image vector.

This approach restricts the general problem of “estimating a picture f”
to the more specific problem of “finding an image vector x such that the f
defined by (6.18) is as near to f as possible using the given basis functions.” To
make the notion of “nearness” precise, we use the definition (6.3) of distance
between two picture functions.

It follows from standard results of mathematical analysis that, irrespective
of how the basis functions are chosen, for any picture f there is one, and only
one, picture f with the following properties:

(i) f is a linear combination of the basis functions,

(it) if f is a linear combination of the basis functions, then

a(r.f)<a(r.7). (6.19)

Furthermore, if the basis functions are chosen so that they are linearly inde-
pendent (i.e., none of them can be expressed as a linear combination of the
others), then there is a unique image vector z that has the relationship ex-
pressed in (6.18) to this f. For example, if the basis functions are defined by
(6.17), then the n x n digitization of f is the f satisfying (i) and (i), and the
associated image vector x is unique.

Ideally, the series expansion approach should aim at finding the image
vector that gives rise to the f nearest to f. However, since our data do not
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uniquely determine f, usually we try to find an image vector x that satis-
fies a less efficacious, but achievable, optimization criterion. Such criteria are
discussed in the next section.

In order to show how the image reconstruction problem translates into a
discrete problem using the series expansion approach we need to observe two
properties of the functionals %, defined by (6.8). The first property is that
they are linear. This means that for all pictures f, and f5, for all real numbers
¢1 and ¢g, and for 1 <i <[,

Zi(c1fr + caf2) = eiZif1 + 2 fa. (6.20)

This is easily proved using the definitions of %; and %. The other property
is mathematically less rigorous. We would like to be able to say that “if fi
and f5 are near each other, then so are %, fi and %, f>.” Unfortunately, using
the distance for functions given in (6.3), a mathematically precise version of
this statement would not be always true. Nevertheless, it is reasonable to
argue, based on the definition of %;, that if f is defined so that the previously
stated properties (i) and (ii) hold, then %; f will be approximately the same
as #;f. This property is called continuity. A basic weakness of the series
expansion approach is that this assumption is sometimes violated. Combining
these properties we can state that, for 1 <i < I,

J

=1

Since the b; are user-defined functions, usually the Z2;b; can be easily
calculated by analytical means. For example, in the case when the b; are
defined by (6.17), %;b; is just the length of intersection with the jth pixel of
the line of the ith position of the source—detector pair. (More precisely, of the
line at a distance #; from the origin making angle #; with the positive y axis;
see (6.8) and Fig. 2.4. In this case, for any given ¢, a list of all the j such that
Zib; # 0 and the values of these %;b; can be efficiently calculated using a
DDA; see Section 4.6.) When using alternate basis functions, it can happen
that the ith line misses the picture region, but nevertheless &;b; # 0 ; causing
a violation of (6.21). It is strongly advisable to remove the measurements
associated with such lines from the projection data sets, and we have done
this in all the relevant experiments on which we report in this book. Unless
otherwise stated, we use r; ; to denote our calculated value of #;b;. Hence,

Ti.i l”ﬁ?ibj. (622)

Recall also that we use y; to denote the physically obtained estimate of Z; f.
Combining this with (6.21) and (6.22), we get that, for 1 < ¢ <[,

J
yi ~ > 1o (6.23)
i=1
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Note that in CT the r;; have dimensionality length, since they are line in-
tegrals of a dimensionless function. Since the wx; have dimensionality inverse
length, the right-hand side of (6.23) is dimensionless, as it should be to match
its dimensionless left-hand side.

Let I? denote the matrix whose (7, j)th element is r; ;. We refer to this ma-
trix as the projection matriz. Let e be the I-dimensional column vector whose
ith component, e;, is the difference between the left- and right-hand sides of
(6.23). We refer to this as the error vector. Then (6.23) can be rewritten as

y= Rr+e. (6.24)

The series expansion approach leads us to the following discrete recon-
struction problem: based on (6.24),

given the data y, estimate the image vector x.

If the estimate that we find as our solution to the discrete reconstruction prob-
lem is the vector z*, then the estimate f* to the picture to be reconstructed
is given by

J
Fr=>"ajb;. (6.25)
j=1

We make the following important observation. Qur justification for the
series expansion approach did not need that the functionals %; be defined by
(6.8). It only needed that the Z;s satisfy the property expressed by (6.21).
Many different ways of defining the #;s will have this property: integration
along curved rather than straight lines or even areas (such as strips) rather
than lines are potentially relevant to the general reconstruction problem. A
major advantage of the series expansion methods over the transform methods
is that they are immediately applicable to such more general ways of data
collection.

6.4 Optimization Criteria

In this section we discuss optimization criteria by which the image vector of
the series expansion approach is estimated. Although this will not be explicitly
indicated, much of what we say is also relevant to estimating pictures using
transform methods.

In (6.24), the vector e is unknown. The very most we can hope for is
that we can specify a random variable of which e is a sample, and in most
cases even this is impossible. The simple approach of trying to solve (6.24)
by first assuming that e is the zero vector is dangerous: y = Rix may have
no solutions, or it may have many solutions, possibly none of which is any
good for the practical problem at hand. Some criteria have to be developed,
indicating which z ought to be chosen as a solution of (6.24).
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The criteria that have been used for the reconstruction problem are usually
of the form: choose as the “solution” of (6.24) an image vector « for which the
value of some function ¢(z) is minimal, and if there is more than one = that
minimizes ¢ (x) choose among these one for which the value of some other
function ¢2(x) is minimal. In this section we survey some of the choices for
¢ and @5 that have been proposed.

A theoretically attractive approach is the following. Consider both the
image vector x and the error vector e to be samples of random variables,
denoted by X and E, respectively. Since our discussion in Section 1.2 was
restricted to continuous random variables whose samples are real numbers,
while here we deal with column vectors of real numbers, further explanation
is needed. (A reader who is not desirous to learn about the foundations of
Bayesian estimation may safely skip to (6.33).)

In fact, there is an additional subtle point that needs to be appreciated,
especially because ignoring it can have some undesirable consequences. As dis-
cussed after (6.18), the dimensionality of the components of the image vector x
is inverse length. As opposed to this, it follows from the discussion after (6.23)
that the components of the error vector e are dimensionless. Because of this,
any formulas involving samples from both X and E have to be formulated
with the unit of length in mind.

The random wvariable X has an associated probability density function
px, which is a real number valued function on J-dimensional vectors of real
numbers (the possible samples of X'). This function px is defined so that, for
any J pairs (€4, u;) of numbers such that £1 < uy, ..., £; < uy, the probability
that a sample = of X will have the property that ¢; < x; <wj, for 1 <7 <.J,

15
U1 LN
/ . j px(x)dry.--dr. (6.26)
f]_ -{;J

For notational convenience we sometimes abbreviate such integrals as

/u px(x)de. (6.27)
¢

Since the probability expressed in (6.26) is dimensionless, it follows from the
dimensionality of the .J components z that px(z) has to have dimensionality
length to the Jth power.

Corresponding to the concepts of mean and variance of a continuous ran-
dom variable as defined in (1.8) and (1.9), we have the concepts of mean vector
px and covariance matriz Vy, defined as

x = /Og apx (z) dx, (6.28)
Vy = /x (z — px)(z— ,uX)TpX(:t) dx, (6.29)
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where 27 denotes the row vector that is the transpose of the column vector
z (i.e., a row vector whose ith component is ;). These integrals are to be
interpreted component by component. For example, using (z — px ), to denote
the ith component of the vector & — pux, the (i, j)th entry of Vy is given by

Vo = [ @-p)@-p)px@de. 60

It follows from these formulas that the dimensionality of the components of
px is inverse length, while the dimensionality of the entries of Vx is inverse
length squared. Note that Vx is a symmetric matriz since it is clear from
(6.30) that (Vic)s; = (Vie)s.

The discussion in the previous two paragraphs has a simpler analog for
the distribution E of the error vectors. In that case all numbers (the values of
pe(e) and the components of ug and of Vi) are dimensionless. Similarly, the
discussion of the next paragraph concerning X has a simpler dimensionless
analog concerning E.

Let p denote a J-dimensional vector of real numbers with dimensionality
inverse length and let V' denote a J X J symmetric matrix of real numbers with
dimensionality inverse length squared. Let us further assume that V' is pesitive
definite, which means that 7 Vz is positive for any J-dimensional vector
with at least one nonzero component. Using elementary matrix algebra if
can be shown that V has an inverse (denoted by V1) and its determinant
(denoted by det V') is positive. Furthermore, the dimensionality of the entries
of V1 is length squared and the dimensionality of detV is inverse length
to the 2Jth power. Using such a g and V', we can define a function pyx over
the set of all J-dimensional vectors of real numbers of dimensionality inverse
length by

1 1 r—1,,
px(o) = e (<3 -0V - w) . (63

Tt is not difficult to check that this px is a probability density function on
the set of all J-dimensional vectors of real numbers of dimensionality inverse
length and, using (6.28) and (6.29), that g, = p and Vx = V. A random
variable X defined in such a fashion is called a multivariate Gaussian random
vartable. The probability density funection of a multivariate Gaussian random
variable peaks at its mean vector.

The importance of multivariate Gaussian random variables rests on two
facts. One is that many random variables occurring in practice are approxi-
mately multivariate Gaussian. The other is that the assumption that an un-
known random variable is multivariate Gaussian usually makes the mathe-
matical treatment of the problem much easier than it would be otherwise.

Let us return now to the random variables X and F associated with z
and e of (6.24). In this case px is referred to as the prior probability density
function, since px (x) indicates the likelihood of coming across an image vector
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similar to . In CT it makes sense to adjust p to the area of the body we are
imaging; the probabilities of the same picture representing a cross section of
the head or of the thorax should be different. Our treating X and E separately
is by itself a simplifying assumption, since in practice E is not independent of
X, as can be seen from the discussion in Section 3.1. The theory that we are
describing can be developed without making this assumption, but it becomes
more complicated.

At last we are in position to state an optimization criterion (it assumes
that px and pg are known): given the data y, choose the image vector z for
which the value of

pe(y — Rz)px (x) (6.32)
is as large as possible. Note that the second term in the product is large for
vectors x that have large prior probabilities, while the first term is large for
vectors x that are consistent with the data (at least if pg peaks at the zero
vector). The relative importance of the two terms depends on the nature of
px and pg. If px is flat (many image vectors are equally likely) and pg is
highly peaked near the zero vector, then our criterion will produce an image
vector ™ that fits the measured data y in the sense that Rz® will be nearly
the same as y. On the other hand, if pr is flat (large errors are nearly as likely
as small ones) but px is highly peaked, our having made our measurements
will have only a small effect on our preconceived idea as to how the image
vector should be chosen. The #* that maximizes (6.32) is called the Bayesian
estimate.

A difficulty with using Bayesian estimation is that it presupposes knowl-
edge of px and pg. Precise knowledge of the true distributions of the image
vector and of the error vector is usually not available. A second difficulty is
that, for many px and pg, the estimation of = that maximizes (6.32) may be
far from trivial.

If we assume that both X and F are multivariate Gaussian, the optimiza-
tion problem becomes much simpler. In that case it is easy to see from (6.31)
that, assuming that (g is the zero vector, the x that maximizes (6.32) is the
same x that minimizes

(y — Rx)" Vgt (y — Rx) + (x — px)" Vil(z — px). (6.33)

Note that both terms in this sum are dimensionless.
A less sophisticated approach is to aim at finding a least squares solution
of (6.24), i.e., an x that minimizes

2
I

7.
lel® =lly — Rell* =" | v — Y _rigas | - (6.34)
i=1

i=1

Such a criterion does not necessarily determine x; there may be more than
one vector x that minimizes (6.34). In such a case one has to select an x by a
second criterion, choices for which are described in the following.
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Another reason why a least squares solution is not necessarily very good
is that the criterion expressed in (6.34) does not contain any information
regarding the nature of a “desirable” solution . In the Bayesian approach of
(6.33) such information is incorporated into the prior covariance matrix V.

It can be reasonably argued that a desirable property of the solution of
(6.24) is that the variance

2

Mn..

j=1
where
1 i
B > .o (6.36)
¥ \g=L

should be small. If the basis functions are chosen according to (6.17), then
Z is the average density in the digitized picture. It can be shown that if
Z is considered fixed for all acceptable solutions to (6.24), then the z that
minimizes (6.35) is the same x that minimizes the (Euclidean) norm ||z| of
x, where

J
lz)* =" =2 (6.37)
J=1

In other words, in such a case the minimum variance and minimum norm
solutions are the same.

The criteria expressed in (6.35) and (6.37) are not to be used as “primary”
criteria in image reconstruction. That is, in terms of the notation introduced
at the beginning of this section, it is not reasonable to define ¢ (x) by (6.35).
That would lead to the “solution” in which all components of x are the same,
namely Z. The use of (6.35) is either as a secondary criterion, or as a compo-
nent of the primary criterion, where the other components force the “solution”
to be consistent with the measurements, or express other properties of desir-
able solutions of (6.24).

For example, in the case when the basis functions are chosen according to
(6.17) it may be considered “desirable” that the values w; assigned to neighbor-
ing pixels should be close to one another on the average. Such a criterion can
be expressed (see Section 12.3) by saying that we desire to minimize T Bz,
where B is an appropriately chosen matrix. This, in conjunction with the de-
sire to minimize (6.34) and (6.37) at the same time, leads us to state that the
sought solution x of (6.24) is the one that minimizes

aly — Rz|? + 2" (bB + U)az, (6.38)

where @ and b are appropriately chosen positive numbers, indicating the rel-
ative importance we attach to minimizing the various expressions previously
discussed, and U is the identity matrix. Here is where the potential for making
a mistake by ignoring dimensionality lies. By stating that U is the identity
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matrix, we are implicitly assuming that its entries are dimensionless, other-
wise changing units could turn U into a matrix other than the identity. Hence
bB also has to be dimensionless and the dimensionality of the second term is
inverse length squared. In order to keep the two terms of (6.38) physically con-
sistent, we need to use an o that has dimensionality of inverse length squared.
In other words, a cannot be a fixed number that is independent of the unit
of length used. Also the expression in (6.38) (which has dimensionality of in-
verse length squared) is a different kind of thing from the expression in (6.33)
(which is dimensionless), but this is a minor technical matter: by dividing
both terms in (6.38) by the positive a, we get a dimensionless expression and
an ™ minimizes this expression if, only if, it minimizes (6.38).

The approaches indicated by (6.33), (6.34), (6.35), (6.37), and (6.38) are
special cases of a quadratic eptimization problem that can be stated as follows.
Find an x that minimizes

aly — Re)" Ay — Ra) + (z — o))" (bB 4 cC™1) (z — z0), (6.39)

where A is a symmetric [ x I matrix, B and C are J x J matrices, a, b, and
¢ are nonnegative real numbers, and g is a J-dimensional vector. (Further
details on the nature of these matrices, constants, and vectors are given in
Section 12.1, which also contains the reasons for writing the matrix in the
second term in the cumbersome form 6B 4 ¢C~1.) There may be more than
one x that minimizes (6.39), in which case we need a second criterion for
selecting one of them. As indicated in the last paragraph, in order to avoid
making mistakes careful attention needs to be paid to the dimensionalities
that occur in (6.39).

There are alternative ways of incorporating prior information about pic-
tures of interest into the process of selecting a solution to (6.24). One example
is to use the knowledge that x; must lic within a certain range. In many ap-
plications, all pictures f(r,¢) that may occur have only nonnegative values.
Then it is reasonable to demand that we accept an image vector z based
on the digitization process of (6.17) as a solution to (6.24) only if z; > 0,
for 1 < j < .J. In fact, one may go further and demand also that for any
solution of (6.24), the error should be within a certain bound, i.e., specify
positive numbers £y, ..., £, and accept as solutions only those z;s that have
the property

J
—E& = Yi — Z rigL; < &, (6.40)
j=1

for 1 <4 < I. Other inequality constraints may also be introduced.

Using such arguments, we can replace the system of equations (6.24) with
the unspecified e and possibly with inequality side conditions, by a system of
inequalities of the form

J
Z”z‘.j—?fj < ¢, (6.41)
j=1
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which may be written in matrix notation as
Nz <q, (6.42)

and restate the reconstruction problem as a search for an image vector z
that satisfies (6.42). One must bear in mind here that there may be no x
that satisfies all inequalities in (6.42), and if there is one such x, then usually
there are many others as well. Just as in the case when there is more than
one minimizing vector of (6.39), we need a secondary criterion to sclect one
of these vectors as the desired solution. There have heen several secondary
optimization criteria proposed in the reconstruction literature.

One of these is based on the minimization of the norm |||, which we
already discussed above. More generally, a unique solution will be ensured, if
among all the image vectors that satisfy the primary criterion we choose the
one that minimizes

| D, (6.43)

where D is a positive definite symmetric J x J matrix. (Recall that this
implies that ¥ Dz > 0 for all nonzero vectors x.) As discussed below, some
reconstruction techniques minimize (6.43) for various Ds.

An alternative secondary criterion is applicable if the average value r of
the x;s is known. In such a case there is at most one vector « for which z; = 0,
for 1< 7 < .J, whose average value is & and that maximizes

J
= (z;/JZ)In(x;/JT). (6.44)

=1

This has been referred to as the mazimum entropy criterion. The use of this
criterion is usnally justified by arguments (which are too long to be repro-
duced here) aimed at showing that of all the pictures that satisfy the primary
criterion the maximum entropy solution has the smallest information content,
and so it is least likely to mislead the user by the presence of spurious features.

The reason why one may assume that Z is known is the following. Consider
Fig. 2.4. For any source-detector pair, the ray sum divided by the length of
intersection of the line with the picture region (reconstruction region) gives
an cstimate of the average relative linear attenuation for that line. If we have
many such lines that provide a fairly uniform and dense covering of the re-
construction region, then the sum of all the ray sums divided by the sum of
the lengths of intersections is a reasonable estimate of x. For example, for
our standard head phantom z = 0.1315. The estimate of  obtained from
the standard projection data (Section 5.8) by the method described above
is 0.1307. This is in spite of the fact that the standard projection data are
contaminated with errors due to photon statistics, beam hardening, scatter,
etc. Similarly, the estimate of & obtained from the standard parallel projec-
tion data is 0.1312. Such experiments justify the use of the method described
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above for the estimation of Z in conjunction with optimization criteria, such
as maximum entropy or minimum variance.

A third secondary criterion that has been gaining popularity in recent
years is total variation (TV) minimization. We restrict our discussion of this
to a special case in which the basis functions are chosen according to (6.17).
Let T denote the set of all indices of pixels that are not in the rightmost
column or in the bottom row of the n x n digitization and, for any pixel with
index ¢ in T, let r(i) and b(i) denote the index of the pixel to its right and
below it, respectively. Then the total variation of the image vector x is defined
as

Ty(e) = Z \/(:zrr(i) — :1??-)2 + (@b — :1.\;,_)2. (6.45)
ieT

A widely studied optimization criterion in the field of image reconstruction
from projections is provided by the concept of mazimum likelihood estimation.
This is a quite general concept that can be described in our context as follows.
Assume that we have a statistical model that provides us, for any image vector
z, with a probability density function p§. of the multivariate random variable
Y associated with the process that generates the measurement vector y. In
practice we choose such a model based on our understanding of the nature
of our application and how the data are collected in that application. For
example, if we already know the probability density function pp associated

with the error vector e that we discussed earlier, then we can define

Py (y) = pe(y — Rx). (6.46)

Then, having observed the measurement vector y, a mazimum likelihood esti-
mate of the image vector is an = that maximizes p{ (y). (Note that the name of
this estimator has an unjustified positive connotation: a maximum likelihood
estimator = is not really a “most likely” one, but rather it is the case that
among all possible image vectors there are none for which the likelihood of
observing y is greater than the likelihood of observing ¥ when x is the image
vector.) Comparing (6.46) with (6.32) that is used to define the Bayesian esti-
mate, we see that the essential difference is that the formula for the maximum
likelihood estimate does not make use of an assumed prior probability density
function px for the distribution of the image vectors.

Such an approach is likely to be useful in applications in which the nature
of pj- is reasonably well understood, but there is uncertainty regarding the
nature of px. For example, in positron emission tomography (see Section
1.1), one may assume that, for 1 < i < I, y; is a sample from the Poisson
random variable with parameter Z}‘-f:l'r-t‘_j:[:j and that these I samples are
independent. Under these assumptions it follows from (3.1) that

- i T4 " exp | — '.I: Ti,5L5
pi‘»(yJZH(Zi:l ) o ([ Bmnem)

]
i=1 Yi:
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Since the natural logarithm is a monotonically increasing function, finding the
x that maximizes this pj (y) is the same as finding the x that minimizes

I

J J
Z Z Ty | — Ui In Z 5Ly . (6.48)
i=1 i=1

i=1

In practice it has been found that the image vector that minimizes (6.48)
is often very noisy looking, as if some salt-and-pepper type of noise had been
superimposed on what is basically a good reconstruction. To counteract this,
the criterion is often regularized, for example, by replacing it with

I

J J
Z z rijri | —yiln z rija; | | +ba’ B, (6.49)
i=1 i=1

=1

where B is the already mentioned smoothing matrix (compare this with (6.38)
and see also Section 12.3). We could have derived the same formula using
Bayesian estimation based on (6.32), combined with (6.46) and (6.47) and
using a multivariate Gaussian px with py the zero vector and Vf1 = bD;
compare with (6.33).

6.5 Blob Basis Functions

Generalized Kaiser—Bessel window funetions, which are also known by the
simpler name blobs, form a large family of functions that can be defined in a
Euclidean space of any dimension. Here we restrict ourselves to a subfamily
in the two-dimensional plane, whose elements have the form

i ry2 ry 2 i )
it (1 - (%) )Iz (cx 1- (%) ) , if0<r<a, (6.50)

0, otherwise,

ba,a,o’(r', Q'D) ==

where I denotes the modified Bessel function of the first kind of order £,
a stands for the nonnegative radius of the blob and « is a nonnegative real
number that controls the blob’s taper (the shape of the blob). The multiplying
constant Cy o s is defined below. Note that such a blob is circularly symmetric,
since its value does not depend on ¢. It has the value zero for all r > «
and its first derivatives are continuous everywhere. In this sense (and in a
deeper mathematical sense that we do not detail here) blobs are very “smooth”
functions, see Fig. 6.3. Their smoothness can be controlled by the choice of
the parameters a, a and 4, as we demonstrate shortly.

For now let us consider the parameters a, o and §, and hence the function
ba.a,5, t0 be fixed. This fixed function gives rise to a set of J basis functions
{b1,...,bs} as follows. We define a set G = {g1,...,gs} of grid points in the
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Fig. 6.3: (a) A 243 x 243 digitization of a blob. (b) Its values on the central row.

picture region. Then, for 1 < j < .J, b; is obtained from b, , s by shifting it
in the plane so that its center is moved from the origin to g;. This definition
leaves a great deal of freedom in the selection of G, but it was found in
practice advisable that it should consists of those points of a set (in rectangular
coordinates)

mé +/3nd

20 2

Gs = m and n are integers and m + n is even (6.51)

that are also in the picture region. Here ¢ has to be a positive real number
and G is referred to as the hezagonal grid with sampling distance 6. Having
fixed 4, we complete the definition in (6.50) by

V382a

—_——. .52
dra?I3(a) G2

Ca:a-_.ﬁ —

The Radon transform (6.4} maps a picture into its line integrals. Its in-
version in practice tends to amplify errors in the measured data. One way of
reducing this is to seek a smoothed version of the theoretical solution. This is
often done by a regularization term (see, for example, (6.49)), but it can be
also tackled by using smooth basis functions.

Pixel-based basis functions (6.17) have a unit value inside the pixels and
zero outside. Blobs on the other hand, have a bell-shaped profile that tapers
smoothly in the radial direction from a high value at the center to the value
0 at the edge of their supports (i.e., at » = a in (6.50)); see Fig. 6.3. The
smoothness of blobs suggests that reconstructions of the form (6.18) are likely
to be resistant to noise in the data. This has heen shown to be particularly
useful in fields in which the projection data are noisy, such as positron emission
tomography and electron microscopy, which were discussed in Section 1.1.
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(a) (b)

Fig. 6.4: (a) A 243 x 243 digitization of a solid bone “head” cross section. (b) Its ap-
proximation with default blob parameters and (c) with slightly different parameters.
The display window is extremely narrow for better indication of errors.

For blobs to achieve their full potential, the selection of the parameters
a, o and & is important. The mathematical analysis of how they should be
chosen is beyond the scope of this book. In SNARKO09, the software auto-
matically calculates good default blob parameters based on the geometry of
the digitized picture that is being produced as output. For example, for the
243 x 243 digitizations used in this book, the default values (to four decimal
place accuracy) are a = 0.1551, &« = 11.2829 and & = 0.0868. Using these
default parameters, one can approximate homogeneous regions very well, in
spite of the bell-shaped profile of the individual blobs. This is illustrated in
Fig. 6.4(b), in which a cross section through solid bone shown in Fig. 6.4(a)
is approximated by a linear combination of the blob basis functions with the
default parameters. There are some inaccuracies very near the sharp edges,
but the interior of the bone is approximated with great accuracy. On the other
hand, if we change the parameters ever so slightly to a = 0.16, & = 11.28 and
0 = 0.09, then the best approximation that can be obtained by a linear com-
bination of the blob bhasis functions is shown in Fig. 6.4(c), which is clearly
inferior.

Based on the mathematical formulas (6.50), (6.51) and (6.52) one can
calculate, for any line i and for any blob basis function b;, the value of
rig ~ by = [#f) (4. 0;). In fact, because blobs are circularly symmetric,
these integrals are not dependent on the orientation #; of the line of integra-
tion but only on the distance of the line from the center g; of the basis function
b;. In practice, for any fixed blob parameters, the values of the integrals as a
function of distance from the blob center can be precalculated and stored on
the computer and so, during any particular reconstruction using such blobs,
the computation of the integral is efficiently achieved by the retrieval of a
precalculated value. This combined with a DDA-like mechanism that indi-
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cates which blobs may possibly be intersected by the given line, allows one to
calculate rapidly the right-hand side of (6.23) for any given image vector .

6.6 Computational Efficiency

In the succeeding chapters we show reconstructions of our head phantom from
the standard projection data (or from the standard parallel projection data)
using many different methods. We also show plots of the 131st column and give
picture distance measures defined in Section 5.1 and statistical performance
comparisons of the kind discussed in Section 5.2.

In addition, we indicate the cost of the reconstruction in terms of computer
time. All the algorithms are implemented in the SNARKO09 programming sys-
tem (see Chapter 4), and the times reported are the number of seconds when
using a computer with an AMD Athlon™ 64 Processor 3500—, 2.2 GHz, 1GB
DDR Memory, running Linux Fedora 9.

While these timings are given for the sake of completeness, they are not to
be taken too seriously. A general framework of computer programs containing
many different algorithms, such as SNARKO09, is by necessity not as efficient
for any single algorithm as a program specially written for that purpose. Thus
the absolute, and even the relative, values of computer times quoted below
may be misleading. Implementations of algorithms used in actual CT scanners
usually involve low (i.e., assembly or machine) level programming and even
special-purpose hardware, making the execution of reconstructions orders of
magnitude faster than what is possible using SNARKO09. (The reason for using
SNARKO09 is ease of implementation; it would be quite beyond the capability
of an individual to implement all algorithms to be reported on in this book
by special-purpose programming.)

This attitude towards timing reflects the fact that electronic hardware
used for calculations is getting cheaper and cheaper at an amazing rate. It
is unlikely that an efficacious reconstruction algorithm would for long remain
unused solely because of computational considerations.

Notes and References

Much of the material in this chapter is based on a survey paper on iterative
reconstruction algorithms [127]. That paper contains discussions of and refer-
ences to many earlier publications concerning reconstruction algorithms hased
on the series expansion approach and optimization criteria. There are many
more recent texts discussing reconstruction algorithms; a good treatment from
a more mathematical point of view is given in [211].

A good coverage of Lebesgue integrals and square integrable functions,
operators, and linear functionals is given by [161].
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Our treatment of the inverse Radon transform adapted the approach and
notation of [234]. A thorough mathematical discussion of Hilbert transforms
can be found in [37]. References to literature on derivations of the Radon
inversion formula without assuming properties such as differentiability are
given at the end of Chapter 15.

Our treatment of multivariate random variables is based on [233]. That
book also contains a discussion of Bayes’ theorem, which provides the mathe-
matical justification for the use of the Bayesian estimate. The equivalence of
the minimum norm and minimum variance criteria is shown in [130].

The maximum entropy formalism is a general scientific approach; there
are whole books devoted to the subject; see, e.g., |180]. The suggestion that
it be used for image reconstruction first appeared in the open literature in
[99]. Tt has heen extensively used in the related ficld of digital image restora-
tion; sce, e.g., [8]. As examples of works on the computation of maximum
entropy solutions, see |74] and |203]. Total variation minimization has become
something of a fad at the time of writing this edition; for a critical discussion
with background references see [121]. TV minimization has been applied in a
variety of fields, for an example in IMRT see [280].

The maximum likelihood formalism was introduced to the image recon-
struction community by L.A. Shepp and A. Vardi [242]. The idea of combining
the likelihood function with one that expresses assumed prior knowledge about
the space of pictures that we are likely to come across in a reconstruction ap-
plication was presented in [181]. Original implementations of such approaches
tended to be slow, many faster variants have been developed over the years,
for example, in [34, 122, 147]. The last of these references seems to have found
great popularity in the emission tomography community. It achieves its effi-
ciency by using essentially the same idea that was proposed much earlier in
[73] for finding the minimizer of (6.39): divide the system of equations, such
as (6.23) or (6.24) into subsets (also called blocks) and get an overall solution
by repeatedly cycling through the blocks, one at a time. A recent interest-
ing application of the maximum likelihood formalism to image reconstruction
from projections is reported in |237]: several conformations of a molecule are
simultaneously reconstructed from a heterogeneous mixture of their electron
microscopic projections taken at unknown orientations.

There are many additional optimization criteria proposed in the literature
include, for instance, maximum signal-to-noise power ratio [255].

Generalized Kaiser-Bessel window functions (blobs) were first proposed
for image reconstruction by R.M. Lewitt [183, 184]. They are also applicable,
if anything more significantly so, in the reconstruction of 3D objects from 2D
projections. The blob basis functions have proved to be more suitable than the
pixel basis functions (in 2D) and the voxel basis functions (in 3D). It has been
shown that the use of blobs as basis functions can produce superior results for
different types of applications, such as positron emission tomography [160, 198]
and electron microscopy [194, 193]. The choice of the hexagonal grid and
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the selection of the default blob parameters is justified by the material in
[199, 200].

Optimization using parallel (and hence fast) computations is discussed
in [48] with special reference to series expansion reconstruction methods. A
recent development along this line is [80]. For methods of using standard hard-
ware to speed up reconstruction algorithms, see [206, 274| and their references.
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