11

Algebraic Reconstruction Techniques

In this and the next chapter we discuss series expansion methods for image
reconstruction. The algebraic reconstruction techniques (ART) form a large
family of reconstruction algorithms. The name is a historical accident; there
is nothing more “algebraic” about these techniques than about the techniques
that are discussed in the next chapter. The distinguishing feature of ART
needs careful discussion, which is given in the following section.

11.1 What Is ART?

All series expansion methods are procedures for the solution of the discrete
reconstruction problem. As discussed in Section 6.3, this is the problem of
estimating an image vector x such that y = Rx + e, given a measurement
vector y. The estimation is done by requiring =z, and the error vector e, to
satisfy some specified optimization criterion of the type discussed in Section
6.4. We use z* to denote the required estimate.

All ART methods of image reconstruction are iterative procedures: they
produce a sequence of vectors (% 21 that is supposed to converge to x*.
This means that, for 1 < 5 < J, ;{tgk) (the jth component of the kth iterate)
should be arbitrarily near to «7, provided that k is chosen large enough. The
process of producing z*+1) from x¥) is referred to as an iterative step.

In ART, z*+1 is obtained from =*) by considering a single one of the T
approximate equations, see (6.23). In fact, the equations are used in a eyclic
order. We use i to denote k(mod I) + 1;1e., ig = 1,4 =2,..., 871 = I,
ir =1, iry1 = 2,..., and we use r; to denote the J-dimensional column vector
whose jth component is r; ;. In other words, r; is the transpose of the ith row
of R. An important point here is that this specification is incomplete because
it depends on how we index the lines for which the integrals are estimated. It
is stated in Section 6.1 that we assume that estimates of [Z f]|(£,6) are known
for I pairs: (£1,81),. .., (£1,07). However, until now we have not specified the
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194 11 Algebraic Reconstruction Techniques

geometrical locations of the lines that are parametrized by these pairs. Since
the order in which we do things in ART depends on the indexing 7 for the set of
lines for which data are collected, the specification of ART as a reconstruction
algorithm is complete only if it includes the indexing method for the lines,
which we refer to as the date access ordering. We return to this point later on
in this chapter.

The kth iterative step in ART can be described by a function «yg, whose
arguments are two J-dimensional vectors and one real number and whose value
is a J-dimensional vector. (In mathematical jargon, ay : R/ x RV x R — R,
where R denotes the set of real numbers.) Then,

) = (a:”“), Pius :u-u) : (11.1)

In words, a particular algebraic reconstruction technique is defined by
a sequence of functions ag, aq, g, .. .. In order to get the (& + 1)st iterate
we apply o to the kth iterate, the ipth row of the projection matrix R,
and the ixth component of the measurement vector 4. Such algorithms have
been referred to as storage efficient, because the J-dimensional vector z(*+1
can be stored in the same part of computer memory where (%) has been
kept, since %) is not needed by the algorithm after the kth step. (Note that
the implementation of the FBP described near the end of Section 8.3 is also
storage efficient. The same cannot be said for the iterative procedures that
are discussed in the next chapter.) Various ART methods differ from each
other in the way the sequence of ags is chosen. We now illustrate the previous
discussion on a particularly simple example.

One way of choosing the s is the following. For any J-dimensional vectors
x and ¢ and for any real number z, let

z—(t,x) .
Lt t, if ({t,t) #0,
o (2, 2) = { N (gt) ™ - ét‘t; i UJ (11.2)

where (e, @) denotes the inner product of two J-dimensional vectors; i.e.,

J
(foy="3 by (11.3)
j=1

Note that, in this case, the agps have the same functional form for all &.
Defining oy, in this way has a number of attractive properties.
One is that, if {1y, , 7, ) # 0, then

J

k+1
TRERN N (11.4)
i=1

i.e., the ixth approximate equality is exactly satisfied after the kth step. To
see this, combine (11.1) and (11.2) and use the notation of (11.3) to get
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<T’i},- : -T(k+1)> = <7"é;,-1 233 (‘r(ﬁ“)’ Tijes yik)>

o (k)
_ ; (k)> fii— (e - .
=TT + - i 11.5

< L (."'"ik-,rr'.k> ( Tk M..) ( )
= Yiy.-

Another attractive property of defining ag by (11.2) is that the updating
of 2®) becomes very simple: we just add to z'*) a multiple of the vector Pips
In practice, this updating of %) can be computationally very inexpensive.

Consider, for example, the basis functions associated with a digitization
into pixels (6.17). Then r;; is just the length of intersection of the ith line
with the jth pixel. This has two consequences. First, most of the components
of the vector r;, are zero. At most 2¢— 1 pixels can be intersected by a straight
line in an £ x £ digitization of a picture. Thus, of the /? components of r;, ,
at most 2¢ — 1 (and typically only about £) are nonzero. Second, the location
and size of the nonzero components of r;, can be rapidly calculated using a
DDA from the geometrical location of the #;th line relative to the £ x £ grid,
as discussed in Section 4.6. Thus, the projection matrix R does not need to be
stored in the computer. Only one row of the matrix is needed at a time, and
all essential information about this row is easily calculable. For this reason
such methods are also referred to as row-action methods.

We investigate this point further, since it is basic to the understanding
of the computational efficacy of ART. Suppose that we have a list ji,...,jir
of indices such that ¢; = 0 unless j is one of the j1,..., . Then evaluation
of (11.3) requires only U multiplications, which in our application is much
smaller than J, as discussed above. Similarly, (¢, ¢) can be evaluated using U
multiplications. Having evalnated (z — (t, z)) / {t,t) using 2U multiplications
(and one division), the updating of x can be achieved by a further U multipli-
cations. This is because only those x; need to be altered for which j = j, for
some u, 1 < u < U, and the alteration requires adding to x; a fixed multiple
of £;. This shows that a single step of the algorithm, as described by (11.2),
is very simple to implement in a computationally efficient way.

Apart from its computational efficiency, (11.2) is an intuitively reasonable
way of producing =1 from =", Suppose that, in addition to requiring
the satisfaction of (11.4) after the kth iterative step, we impose the following
conditions on the way the kth step should be carried out.

(i) Only those pixels that are intersected by the ixth line should have their
densities changed.

(ii) The density change of a pixel should be proportional to y;, — <?*L-k : :r“”)
(the “error” in the ixth approximate equality prior to the kth step).

(iii) The change in the jth pixel should be proportional to r;, ;.

These conditions, nearly identical to the conditions for discrete backprojection

stated in Section 7.3, uniquely determine how the ags are defined; and they

lead to (11.2). The early literature on ART relied on justifying the algorithms

by showing that they are derived from such reasonable conditions.

abris.nagy @science.unideb.hu



196 11 Algebraic Reconstruction Techniques

Before we get into the details of specific ART methods, two comments are
in order. First, for (11.1) to specify the sequence 2@ 2™ @ | precisely,
we need to select the initial vector (). The choice of z(¥) is quite important
in the practical behavior of these algorithms. More is said about this below.
Second, if the version of the discrete reconstruction problem that is repre-
sented by the system of inequalities Na < g (see Section 6.4) is used, then the
general description of ART given by (11.1) is not always adequate. In such a
case, a slightly more complicated general framework may be required, but one
that has essentially similar computational requirements. We discuss a similar
situation in Section 11.3 in some detail.

11.2 Relaxation Methods for Solving Systems of
Inequalities and Equalities

In this section we give the mathematical background to ART. We do this in
the framework of the mathematical problem “find a vector that satisfies all of
a given set of linear inequalities.” In other words, we are interested in finding
a J-dimensional vector x such that

(ni,z) < qu, for 1<i<Ph (11.6)

where the n, are given J-dimensional vectors and the ¢; are given real numbers.
Equation (11.6) is a rewrite of (6.42).

In what follows we agsume that each n; has at least one nonzero compo-
nent. A physical interpretation of this assumption is that we do not make use
of a measurement if none of the basis functions contributed to it. The reason
for making this assumption is to avoid having to make special cases all the
time when (n;, n;) = 0, like we had to do in (11.2).

We introduce some sets of vectors N; (1 <i< P)and N. For 1 <i < P,

Ni={z | {ny,z) <aq} (11.7)
and
P
N =N (11.8)
i=1

In words, NV; is the set of vectors that satisfies the ith of the P inequalities in
(11.6), and N is the set of vectors that satisfies all P inequalities. Our aim,
for now, is to find an element of NV,

More precisely, we need an algorithm that, for given ny, ..., np, q1,...,qp,
finds an « in N. We propose an ART-type method using functions
&, if {t,z) <z,
ap(x. b z) = ' pom. T 11.9
k( ) {:r: + AR %t, otherwise, (2:9)
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11.2 Relaxation Methods for Solving Systems of Inequalities and Equalities 197

where A*) is a real number, referred to as the relazation parameter.
Consider the following procedure, which we refer to as the relazation
method for inequalities.

x©) is arbitrary,

: , 11.10
L i (R g ) ( )

where ay, is defined by (11.9) and i, = k{mod P} + 1. If the relaxation pa-
rameters satisfy the weak condition that, for some =1 and 5 and for all £,

0<e AR <y <2 (11.11)

then the relaxation method for inequalities produces a sequence z(®), z(1) 2(2)
... that converges to a vector in N, provided only that NN is not empty. Proof
of this result appears in Section 15.8.

Next we discuss the geometrical nature of the relaxation method for in-
equalities and, in particular, the role of the relaxation parameters. Let

H,=Az| {(ny.z)=q}. (11.12)

In words, H; is the set of vectors « for which the ith inequality is satisfied by
the two sides of the inequality being actually equal. Note that H; is a subset
of N;. Each H; is what mathematicians call a hyperplane. If the dimension J
of = is three, then a hyperplane is a plane in three-dimensional space. If the
dimension J of x is two, then a hyperplane is a straight line in two-dimensional
space (i.e., in a plane).

The two-dimensional case is illustrated in Fig. 11.1. There are two hyper-
planes H; and Hy. For these hyperplanes

ny = (dll) . N = (g) , (11.13)

=24, go=30. (11.14)

Observe the following simple geometrical fact: The vector n, (think of it as the
line drawn from the origin to the point n; in the plane) is perpendicular to the
line H;. This statement generalizes to any dimensions, as a reader acquainted
with analytic geometry can easily see from (11.12).

Sinee in the relaxation method for inequalitics, (11.10), the role of ¢ in
(11.9) is taken by n;,, we see that if z® D differs from «®) at all, then
B+ — %) (which is a multiple of n;,) is perpendicular to H;, .

The geometrical interpretation in the two-dimensional case is that N is
a set of points lying on one side of the line H; (including the line H;). For
example, in Fig. 11.1, both Ny and N3 are those half-planes that include
the origin. Their intersection N, is shown dark in Fig. 11.1. This notion also
generalizes, and we say that N; is a half-space that is the set of points lying
on one side of the hyperplane H; (including the hyperplane H;). The set N,
as defined by (11.8), is an intersection of such half-spaces.
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4 X2

25

a1 T W
H1'{["z}l""1* xgRizk)= Ly

Fig. 11.1: Demonstration of the relaxation method (with A*) = 1, for all k) for
the simple case when I = J = 2, In the demonstration n; and nz are given by
(11.13) and ¢1 and ¢z by (11.14). (Tllustration based on [127], Copyright 1976, with
permission from Elsevier. )

In the relaxation method for inequalities, see (11.9) and (11.10), if z*)
is in the half-space N;,_ then we do not change our estimate during the kth
iterative step (i.e., ®*1 = 2N If 2% is not in the half-space N;, , then
we move our estimate perpendicular to the bounding hyperplane H,, of N;,
(ie., z¢+D — 2K ig orthogonal to Hj, ). The amount of movement depends
on the size of A%*}. If A®) = 1, then by an argument identical to that given
for (11.3), we can prove that (n;, ,z*+1) = ¢, . ie., that 2% is in the
hyperplane H;,. The following statement can be shown in a similarly casy
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11.2 Relaxation Methods for Solving Systems of Inequalities and Equalities 199

fashion. During the kth step of the relaxation method for inequalities with
2®) not in N;,, the move from z*) to "+ is perpendicular to H;, and has
one of the following geometrical properties:

if A%%) < 0, the move is away from I, ;

if A®) = 0, there is no movement;

if 0 < A*¥) < 1, the move is toward H,, , but does not quite reach it;

if A%%) = 1, the move is to H;, exactly;

if 1 < A*¥) < 2 the move is past H;, , but 1 is nearer to H;,:

if A =2 2(k+1) i the mirror image (reflection) of 2*) in H,, ;

if A®) > 2 x(k+1) i on the other side of H;, further from H;, than z(F).

To illustrate the relaxation method for inequalities, consider again Fig.
11.1. Two inequalities are involved (i.e., P = 2}, and the vectors ny, ne and
the scalars g, g2 are defined by (11.13) and (11.14), respectively. Suppose we
choose A% = 1, for all k. We also have to choose the initial vector. If we let

0 = (g) : (11.15)

then, as can easily be checked,

e 4 : 2 80/29
L0 _ (8) and 2@ = (142/29 ‘ (11.16)

Since () is in both Ny and Na, all values of ®), for k> 2, are the same as
2 Hence the method converges to =* = x(?), which is in N.

The convergence that occurs in this example is called finite convergence
since the x*) remain constant after a finite number of iterative steps. It is
not the case that the relaxation method for inequalities always has finite
convergence if the A!*) are chosen according to (11.11).

Now we turn to study systems of equations. Suppose we are given J-
dimensional vectors ¢; and real numbers b; for 1 <i < I. Let,

L= {z | 4o, =i = by} (11.17)
and

L={)L. (11.18)

We observe the following fact: L can also be expressed as the intersection
of a set of half-spaces. In fact, if we let P = 21 and define, for 1 <i <1,

Naj—1 = {z | (—a;, ) < b}, (11.19)
Nyg ={z | (a5, 7) < bi}, (11.20)

then
L; = Naj—1 N Ny; (11.21)
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200 11 Algebraic Reconstruction Techniques

and, consequently, L defined by (11.18) is the same as N defined by (11.8),
provided that the N; are defined by (11.19) and (11.20). Hence we can apply
the relaxation method for a system of inequalities to find an element of L.
Here we assume that, for all 1 <i <1, {a;,a;) > 0.
However, note that
L, =Hs,_, = H,, (11.22)

where H; denotes the bounding hyperplane of the half-space N, see (11.12).
Hence the combined effect of the (2k — 1)st and (2k)th iterative steps is to
move (if at all) perpendicular to the hyperplane L;,. We can combine these
two steps and obtain the following relazation method for systems of equalitics:

@ is arbitrary,

b+ — () 4 o) (11.23)

Qe
It follows easily from the result stated for the convergence of the relaxation
method for inequalities that if, for all £ = 0,

g k)
SONNCL Al UMD} (11.24)

(g, iy )

with A*) satisfying (11.11), then the relaxation method for equalities produces
a sequence (), 21 (2 that converges to a vector in L, provided only
that L is not empty.

The algorithm described by (11.1) and (11.2) is a special case of the relax-
ation method for equalities, with A¥) =1, for all k. We illustrate this special
case in Fig. 11.1. Defining a; = ny, as = ns, b1 = ¢1 and by = ¢2 by (11.13)
and (11.14), we see that if we start with z(”) defined by (11.15), then we get
M and 2? as defined by (11.16). From this point on, the sequence produced
by the relaxation method for equalities differs from the relaxation method for
inequalities, which we discussed before. This is because 2'? does not lie in Lo
and so further steps are necessary to get nearer and nearer to an element of
L, which, in this case, is the unique intersection z* of the two lines L, and
Ls. The geometrical interpretation given above shows that the sequence of
vectors is produced by dropping perpendiculars alternately onto L and Lo,
see Fig. 11.1.

In general, L has more than one element. With a little extra care in choos-
ing =®, we can ensure that the relaxation method for equalities converges to
an element of L that satisfies an optimization criterion, namely, the minimum
norm criterion; see (6.37) in Section 6.4. To do this, we introduce a set S of
vectors, which is the set of all linear combinations of the a;, that is

i
S = {.L | z = E 3;a, for some real numbers ,.-")",,} . (11.25)
i=1

The following result is sometimes referred to as the minimum norm the-
orem: if L is not empty, then there exists one, and only one, element z* in
LN S; furthermore, for all x in L other than x*,
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]| < [l (11.26)

where [|z]|* = (z,z); see (6.37). We refer to =* as the minimum norm element
of L. We have already discussed in Section 6.4 why choosing a minimum norm
element may be considered useful in picture reconstruction.

It is clear from (11.23) that if we choose z(®) to be an element of S, then
z®) is an element of S, for all k. It follows, using basic linear algebra, that
the limit «* of the sequence z'©, ("), x(® ... is also in S. Since the limit z*
is also in L (by the convergence of the relaxation method for equalities), =*
is in L M . Hence, by the minimum norm theorem, x* is the minimum norm
element of L.

In the example for Fig. 11.1, S is the set of all two-dimensional vectors.
Hence ' is in S, whichever way it is chosen. Since in that simple example
there is only one solution, it is by necessity the minimum norm solution. This
is, however, not typical. If there are more unknowns than equations, there will
be invariably many solutions, and care has to be taken in choosing (%) if the
minimum norm solution is desired.

There are versions of the relaxation method that provide the minimum
norm solution for a system of inequalities. These are more complex than the
methods previously discussed and are beyond the scope of this book. In the
next section we discuss a method whose implementation is similar to the
implementation of relaxation methods for finding the minimum norm solution
for a system of inequalities.

11.3 Additive ART

In this section we discuss the application of the relaxation methods of the
last section to image reconstruction. Such methods are referred to as additive
ART, since in a single iterative step the current iterate is altered by adding
to it a scalar multiple of the transpose of a row of the projection matrix; see
(11.1) and (11.2).

The simplest approach is to use the relaxation method for equalities, de-
scribed by (11.23) and (11.24), with a; = r; and b; = y;. By the result stated
in the previous section, this generates a sequence of vectors (9, x(1) 22
that converges to an x* such that Rz* = y, provided that there is such an
¥, The problem is that the relationship between the image vector = and the
measurement vector y (6.24) is such that there may not exist such an z* or
that, even if such an z* exists, it may not be a desirable solution to the dis-
crete reconstruction problem. In view of this, it is pleasantly surprising that
even this simple approach leads to acceptable reconstructions, especially if
the relaxation parameters are chosen to he rather small (e.g., 0.05). This is
illustrated in Section 11.5.

One way of making the theory of the last section applicable to the image
reconstruction problem is by using the formulation that involves a system of
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inequalities (6.42). Much work has been done in that direction. In particular,
ART-type procedures exist that find the minimum norm solution of a system
of inequalities. Such procedures require a formulation more complicated than
what is provided by the framework of (11.1). In addition to the sequence of
J-dimensional vectors z(@, (M 22 .. they produce and use a sequence of
I-dimensional vectors u®, ut") u®, ...,

In this book we discuss an alternative approach, but one that has a similar
implementation. We give an additive ART method for finding the Bayesian
estimate (see Section 6.4) under certain restrictive assumptions.

In the terminology of Section 6.4, we make the following assumptions.
Both X and E are multivariate Gaussian random variables, with ¢ g the zero
vector, and Vx and Vg both multiples of identity matrices of appropriate
sizes. In other words, we assume that components of a sample of X — px are
uncorrelated, and that each component is a sample from the same Gaussian
random variable; and we also assume that components of a sample of £ are
uncorrelated and that each component is a sample from the same zero mean
Gaussian random variable.

We use t? to denote the diagonal entries of Vy and s? to denote the
diagonal entries of Vi and let » = ¢/s. It follows from the discussion around
(6.31) that the dimensionality of £, and hence of r, is inverse length. According
to (6.33), the Bayesian estimate is the vector # that minimizes

r?|ly — Re||* + ||z — px|| - (11.27)

Note that a small value of r indicates that prior knowledge of the expected
value of the image vector is important relative to the measured data, while a
large value of r indicates the opposite.

What we are going to do now is essentially the following. We look at
the equation Rz + ¢ = y as an equation in I + .JJ unknowns, namely all the
components of = and all the components of e. This is a consistent system of
equations; for any x, e = y — Rz provides a solution. Methods for solving
consistent systems can therefore be applied. However, in order to find the z
that minimizes (11.27) a slightly more complicated approach is needed.

We denote column vectors of dimension I + .J by

u
z ¥
where u has I components and z has .JJ components. We also use the notation
(U rR)

for the I x (I +J) matrix, whose first I columns form the I x I identity matrix
U and whose last J columns form the matrix R with every entry multiplied
by r. The system of equations

(U rR) (“) =7r(y — Rux) (11.28)
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is a consistent system of equations. This is because, if we let £ be an arbitrary
J-dimensional vector and let

i =r(y — Rux — R3), (11.29)

-

then (";) satisfies (11.28).

The reason for introducing (11.28) is the following. If «* and z* are vectors

s

such that (:* ) is the minimum norm solution of (11.28) and if

¥ ="+ px, (11.30)

then ™ minimizes (11.27).
In order to verify this claim consider any .J-dimensional vector . Let

— & —px (11.31)

Ty

and define @ by (11.29). Then
@ =r(y — RE). (11.32)
It follows that

‘ il 4 (1 T —— . )
r?|ly — R&(|" + ||& — px||* = 6] + 1217 = lu*|* + 2%, (11.33)

*

since (z*) is the minimum norm solution of (11.28) and (Ij) is also a
solution of (11.28). ’
From the fact that v*, z*, and * satisfy (11.28) and (11.30), we obtain
u =7y — Rx*). (11.34)
This combined with {11.30) and (11.33) gives
r?|ly — R&|* + ||& — px|® > r? ly — Ra*||” + [|=* — px|®.  (11.35)

Since & is an arbitrary .J-dimensional vector, this shows that =* minimizes
(11.27).

It follows thercfore that any method that provides the minimum norm
solution of (11.28) automatically gives us the vector that minimizes (11.27).
One way of finding the minimum norm solution of a consistent system of
equalities is the relaxation method for equalities. Note that the iterative step
of (11.23) applied to (11.28) is

(k+1) (k) :
u 1 5 e
(ZUH‘I) ) — (Z(k) ) + C(M ('if’ ?_; ) 5 (1136)

abris.nagy @science.unideb.hu



204 11 Algebraic Reconstruction Techniques

where e; denotes the transpose of the ith row of E (which happens to be the
same as the ith column of E, since E is an identity matrix), and

r (yik ok <Ir?ig.7.|u)f>) - (ug(?) +7r <?ﬂ2k3 Z”")>)

: 2
L 72 |l |

k) (k) (11.37)

Note that, if S is defined by (11.25), then the zero vector is in S. Hence,
one way of ensuring that the relaxation method for equalities, with iterative
steps as in (11.36), converges to the minimum norm solution of (11.28) is to
choose both (9 and 29 to be zero vectors of appropriate dimensions.

We define, for all £,

) = (k) 4 X - {11.38)

If the sequence z(@, z(1 22} converges to z*, then the sequence z(®, 2V,
2@ ... converges to x*, defined by (11.30). This z* minimizes (11.27).

There is in fact no need to introduce explicitly the z*) into the algo-
rithm. Combining (11.36), (11.37), and (11.38) with the fact that both u(®
and z(® are chosen to be zero vectors, we get the following algorithm. The
sequence (%, z" 22 produced by it converges to the Bayesian estimate
x*, provided that the relaxation parameters A*) gatisfy (11.11).

u% is the IT-dimensional zero vector,

w0 _

2\ = px,

wFHD) — (B | o) (11.39)

"€y
D) = () )y,

where )
ok — (k) r (v — <-ru.3w(“>) -

. 2
L+ 72 lr |

(11.40)

Note that this algorithm cannot be brought into the framework of (11.1),
but its implementation is hardly more complicated than the implementation
of the method described by (11.2). We need an additional sequence of I-
dimensional vectors «(®), but in the kth iterative step, only one component
of u*) (namely the ixth component) is needed or altered. As pointed out
in Section 11.1, in our application area the r;, are usually not stored at all,
but the location and size of their nonzero clements are caleulated as and
when needed. Hence the algorithm described by (11.39) and (11.40) shares
the storage-efficient nature of the simple ART method described in Section
11.1. Tt is easy to see that the computational requirements are also essentially
the same.

The algorithm described by (11.39) and (11.40) is a typical additive ART
algorithm. To illustrate this further, we now state, without proof, an additive
ART algorithm that produces a sequence 2% 21 22 that converges to
the minimum norm solution of a system of two-sided inequalities
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i S <T'f,'.17) S 51: (1141)
1 < i < I; compare this with (6.40).

49 is the I-dimensional zero vector,
2 is the J-dimensional zero vector,

w1 — 8 (Rl (11.42)
S+ — 0 4 o
where
3 A k) N : 2 o 2
¢® = mid {ul®, (8, — (ra,z®)) /lranl®, (0 = (rise® ) /llrac )}
(11.43)

where mid{u, v, w} denotes the median of the three real numbers u, v, and w.
The algorithm described by (11.42) and (11.43) has been referred to as ART4
in the literature, in order to distinguish it from other versions of ART, which
have different convergence properties.

11.4 Tricks

It has been found in practice that the efliciency of iterative algorithms for
image reconstruction can often be improved by applyving between iterative
steps certain processes to the image vectors. These processes have been re-
ferred to as tricks in the literature. In this section we deal with such tricks
and also with other recommendations that can be made based on experience
to improve the performance of ART, especially the potential usefulness of the
images obtained by the early iterations of the algorithm.

Consider the iterative step in ART as described by (11.1). Let 73 be func-
tions mapping .J-dimensional vectors into .J-dimensional vectors. Then the
iterative method of (11.1) combined with the sequence of tricks 7 produces
a sequence (9 2 () defined by

) _ (E(k),?‘ik:y’u) 1 (11.44)

AGREY IR (:??(k+1)) : (11.45)

Tricks are useful if they incorporate prior knowledge about the desirable image
vectors. Sometimes they can be used to accelerate convergence towards the
image vector that satisfies the specified optimization criterion. Other times,
they actually cause the process to move towards an image vector other than
the one optimizing the specified criterion function, but that is nevertheless
a better approximation of the picture to be reconstructed according to some
evaluation criterion such as the picture distance measures of Section 5.1. The
latter happens, for instance, if the desirable digitized pictures have a common
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property that cannot bhe expressed by a simple function, but that may be
obtained by the application of an appropriate trick. In the discussions that
follow, the intuitive justifications for all the tricks are based on the assumption
that the basis functions are those associated with an n xn digitization, defined
by (6.17).

One possible trick is based on the idea of selective smoothing, discussed
in Section 5.3. It is potentially useful when the image to be reconstructed
is made up from regions within which the values are largely uniform and
distinguishable from those in other regions. (Figures 5.3 and 5.4 illustrate
the effect of a single application of the trick of selective smoothing to the
output of FBP for divergent beams. Table 5.1 shows that improvements in
the picture distance measures are achieved using this trick. There was also
an improvement. in the HITR in our task-oriented experiment, but not in the
IROL) When this trick is used in conjunction with ART, typically we choose
7k in (11.45) to represent selective smoothing only infrequently, e.g., only
when k is a multiple of I (the number of measurements). For other values of
k, we choose 7, to be the identity function, which does not change the image
vector.

In contrast, the trick of constraining is usually applied at every iterative
step of ART. Constraining is justified in case we have prior information about
the range within which the components of acceptable image vectors must
lie. For example, the linear attenuation coefficient (at any energy) is always
nonnegative, and in medical applications we may usually assume that it is
always bounded above by the linear attenuation coefficient of compact bone.
Such constraints may be introduced into series expansion methods in various
ways. They may simply be made part of the set of inequalities (11.6). Or they
may be introduced into the iterative algorithm as tricks. For example, if we
know that, for 1 < j <.J,

A<y <, (11.46)

then the following trick is appropriate.

T (8) =, (11.47)
where, for 1 < j < J,
A, i dpe
ry=< & i A<E <p, (11.48)

e i p < zy.

Such a trick can be easily incorporated into ART. To demonstrate this,
consider the relaxation method for inequalitics. The following is claimed to be
true. If NV, as in (11.8), contains at least one vector x whose components satisfy
(11.46), then the algorithm below produces a sequence 2O 2 2@ that
converges to an element of N whose components satisfy (11.46).
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z(0) is arbitrary,
j(k‘i‘]} = (:r(k)';n',i.k-, qik)r (114:9)
2+ = (i,(k+1)) !

where ay is defined by (11.9) with the Aj satisfying (11.11), and 7y is defined
by (11.47) and (11.48).

The verification of this claim follows easily from the convergence of the
relaxation method for inequalities. This is because the set of vectors M that
satisfy (11.46) can be characterized as follows. Let, for 1 < j < .J,

Moj_1 ={z|z; < u} (11.50)
and
Then
27
M=) M;. (11.52)
J=1

Thus M, the set of vectors satisfying (11.46), can be described in a way strictly
analogous to the way N is described in Section 11.2. The reader can easily
check that applying the relaxation method for inequalities based on M instead
of N, with relaxation parameter 1 and initial vector & produces in 2.J itera-
tive steps the vector 7 () where 7y is defined by (11.47) and (11.48). Thus,
the trick of constraining in this case is equivalent to applving the relaxation
method to a larger set of inequalities. This completes the verification of the
claim on the convergence of (11.49).

There are other versions of constraining in use besides the one specified by
(11.47) and (11.48). For example, there is a way of defining the constraining
T$ 80 that, when used in conjunction with the algorithm described in (11.42),
the method converges to the minimum norm solution of the combined system
(11.41) and (11.46). Another method, which is useful when it is known a
priori that there are only two different densities in the picture (as is the case
in certain nondestructive testing applications), is to use 75 that set the values
of &; to either one or the other of the two densities.

Another trick that we have already come across is noermalization. This
is discussed in conjunction with the backprojection method in Section 7.2.
Repeated normalization during the iterative procedure has sometimes been
found to improve the speed of convergence of ART to a desirable result.

A trick whose use is relatively recent is referred to as superiorization.
The idea is the following. Suppose that we have a secondary optimization
criterion of the kind discussed in Section 6.4 for which we do not have an
efficient algorithm that converges to the optimal solution for a given set of
equality and/or inequality constraints; a possible example is total variation
(6.45) minimization. Then we can select the 7s so that they steer the iterative
process in the direction of the optimal solution. If the criterion is to find an =z
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satisfying the constraints for which ¢(z) is small for some functional ¢ (such
as provided by TV), then we can use

TR(x) = x — B V(x), (11.53)

where the vector V¢ (z) (called the gradient of ¢ at z) is the direction of
greatest increase in ¢ at the vector » and the 3 are positive real numbers.
For appropriate choices of the 35 it can be proved that if an ART procedure
converges to a vector satisfying a set of equality /inequality constraints, then
the same procedure altered by the trick of (11.53) also converges to such a
vector. The expectation (validated by experience) is that for the procedure
with the trick we get to an x for which ¢(x) is smaller than it would be with-
out the trick. Ideally, we would like to get to an z for which ¢(x) is as small
as possible, but this is not guaranteed; this is why the trick is referred to as
superiorization (as opposed to optimization). In practice the trick of superior-
ization, just like the trick of selective smoothing, is applied only infrequently
during the iterative process.

Although there are other tricks whose use has been reported in the liter-
ature, we conclude this section by a discussion of four topics related to, but
somewhat, different from, tricks.

An essential tool available with ART is the relaxation parameter. We have
already mentioned that choosing a low value for the relaxation parameter
has been found to result in good reconstructions using ART-type algorithms,
even on experimentally obtained data. A low relaxation parameter, underre-
lazation, seems to reduce the effect of inaccuracies in the equations, and pre-
vents the noisy appearance of ART-type reconstructions when using a high
relaxation parameter. This is illustrated in the next section.

In certain situations a limited use of a high relaxation parameter is ad-
visable. When solving a system of inequalities, the process can be markedly
shortened if, whenever an inequality is only slightly violated by the current
iterate, a relaxation parameter with value 2 is used, resulting in a mirror
reflection of the iterate in the bounding hyperplane associated with the in-
equality. Selective use of reflections can, under certain circumstances, ensure
finite convergence.

The choice of inttialization (i.e., of ;z:(o)) has an effect on the outcome of
the iterative procedure, especially since due to time and cost constraints the
number of iterative steps may be rather limited. For example, in the algorithm
(11.39) ® is supposed to be py. In practice, it may be very difficult to
find the mean of the multivariate random variable that represents the actual
situation. Instead, outputs of other methods (such as FBP) have often been
used as z'? for ART. Even more frequent in practice is the use of a uniformly
gray picture, possibly with the estimated average density in every pixel, which
is what was done in all the ART experiments reported in the next section.

Last, but not least, the order of equations (or inequalities) in the system
(the data access ordering discussed in Section 11.1) can also have a signifi-
cant effect on the practical performance of the algorithm, especially on the
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early iterates. With data collection such as our standard geometry depicted
in Fig. 5.5, it is tempting to use the sequentiol ordering: access the data
in the order g(—NX 0}, g((—N + 1)A,0),....g(NX0), g(—=NX, A), g((—N +
DANA)Y L g(NAVA) g =NA (M=-1A), g((-N+1A, (M-1)A4),...,
g(NA, (M — 1)A), where g(o, 4) denotes here the measured value of what is
mathematically defined in (10.2). However, this sequential ordering is infe-
rior to what is referred to as the efficient ordering in which the order of
projection directions mA and, for each view, the order of lines within the
view is chosen so as to minimize the number of commonly intersected pixels
by a line and the lines selected recently. This can be made mathematically
precise by considering the decomposition into a product of prime numbers
of M and of 2N + 1. SNARKO09 calculates the efficient order, but the user
needs to ensure that both M and of 2N + 1 decompose into several prime
numbers, as is the case for our standard geometry for which M = 720 =
2x2x2x2x3x3xband 2N +1 =345 = 3 x & x 23. While the sequential
ordering produces the sequences m = 0,1,2,3,4,... and n = 0,1,2,3,4, ...,
the efficient ordering produces the sequences m = 0, 360, 180, 540,90, ... and
n = 0,115,230,23,138, ... These changes in data access ordering translate
into faster initial convergence of ART, as is illustrated in Fig. 11.2 by plotting

~— ART 005 inefficient hlob

= ART 0.05 efficient blob
ART with blobs :: Relative Error
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\
\
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Fig. 11.2: Values of the picture distance measure r for ART reconstructions from
the standard projection data with sequential ordering (light) and efficient ordering
{dark), plotted at multiples of [ iterations (complete cycles through the data).
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the picture distance measure r against the number of times the algorithm
cycled through all the data (all I equations). While it i3 clearly demonstrated
that initially = gets reduced much faster with the efficient ordering, for this
particular data set it does not seem to matter much, since both orderings need
about five cycles through the data to obtain a near-minimal value of r. In other
applications in which the number of projection directions is much larger (for
example, in the order of 10,000 as is often the case in electron microscopy),
one cycle through the data using the efficient ordering yields about as good a
reconstruction as one is likely to get, but the sequential ordering needs several
cycles through the data. In addition, as we demonstrate in the next section,
the efficacy of the reconstruction produced by the efficient ordering may very
well be superior to that produced by the sequential ordering.

11.5 Efficacy of ART

In this section we illustrate some of the algebraic reconstruction techniques.
All the illustrations are done on the standard projection data. Only outputs
at the end of some integer multiple of T iterations are used. This is because
in [ iterations the measurements for all source—detector positions have heen
made use of exactly once; i.e., we have cycled through the data exactly once.
In all ART reconstructions reported in this section we initialized the process
so that all components of z' are given the value of the estimated average
density & based on the projection data, as specified in Section 6.4. We note
that if we gave to the components of x° the value 0, the resulting 2!/} would
be indistinguishable from the 2/} we get by our selected initialization (with
blobs, all A%) = 0.05, efficient ordering, and no nonnegativity constraints).
We wish to emphasize first the importance of the basis functions. In Fig.
11.3 we plot the picture distance measure r against the number of times ART
cycled through all the data, where we made the choices that the relaxation
parameter is always 0.05 and the data access ordering is the efficient one. The
two cases that we compare are when the basis functions are based on pixels

Table 11.1: Picture distance measures and timings (in seconds) for the reconstruc-
tions in Fig. 11.4. The last two columns report on the values of IROI and HITR for
the various algorithms that were produced by a task-oriented evaluation experiment.

reconstruction in d r i IROI HITR

Fig. 11.4(a)  0.1060 0.0423 8.7 0.1677 0.9499
Fig. 11.4(b)  0.0813 0.0327 29.4 0.1658 0.9213
Fig. 11.4(c)  0.0874 0.0470 29.2 0.1592 0.9198
Fig. 11.4(d)  0.0874 0.0373 163.7 0.1794 0.9481
Fig. 11.4(c) 0.0768 0.0488 66.2 0.1076 0.7128
Fig. 11.4(f)  0.0876 0.0391 148.9 0.1624 0.7820
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Fig. 11.3: Values of the picture distance measure r for ART reconstructions from the
standard projection data with pixels (light) and blobs (dark), plotted at multiples
of I iterations (complete cycles through the data).

and when they are based on blobs as specified in Section 6.5. The results
are quite impressive: as measured by r, blob basis functions are much better.
The result of the 5Ith iteration of the blob reconstruction is shown in Fig.
11.4(d), while that of the 5/th iteration of the pixel reconstruction is shown
in Fig. 11.4(c). The blob reconstructions appears to be clearly superior. We
attempted to improve the pixel reconstruction by enforcing nonnegativity on
the reconstructed values, as can be done using ART by setting A = 0 in (11.46).
This does not result in a noticeable improvement in appearance, as can be seen
in Fig. 11.4(b). By looking at Table 11.1, we see great improvements in the
picture distance measures r and d as a result of enforcing nonnegativity, but
this is totally misleading from the point of view of our application because the
improvement is due to the values being more correctly reconstructed outside
the skull (where the values in the phantom are all 0). From the points of view
of the task-oriented figures of merit, TROT and HITR, ART with blobs is found
superior to ART with pixels, with or without nonnegativity; the relevant P-
values are all less than 107, Plots of values along the 131st column of the
ART with pixels and nonnegativity reconstruction and of the ART with blobs
reconstruction are compared in Fig. 11.5.
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Underrelaxation is also a must when ART is applied to real, and hence
imperfect, data. In the experiments reported so far A'*) was set equal to 0.05
for all k. If we do not use underrelaxation (that is we set A% to 1 for all
k), we get from the standard projection data the unacceptable reconstruction
shown in Fig. 11.4(e). Note that in this case we used the 2Ith iterate, further
iterations give worse results. The reason for this is in the nature of ART:
after one iterative step with A(") = 1, the associated measurement is satisfied
exactly as shown in (11.5) and so the process jumps around satisfying the noise
in the measurements. Underrelaxation reduces the influence of the noise. The
correct value of the relaxation parameter is application dependent; the noisier
the data the more we should be underrelaxing. Note in Table 11.1 that the
figures of merit produced by the task-oriented studies without underrelaxation
are much smaller than in all the other cases with which they are compared.

We now return to the issue of data access ordering. Using 571 iterations
with A(®) = 0.05 for all k, we get from our standard projection data using
the sequential ordering the reconstruction shown in Fig. 11.4(f), which does
not look very different from the reconstruction obtained using the cfficient
ordering that is shown in Fig. 11.4(d). However, using either IROI or HITR
as the figure of merit, results in our rejecting the null hypothesis that the two
data access orderings are equally good in favor of the alternative hypothesis
that the the efficient ordering is better with P-value less than 1079,

For comparison, we show in Fig. 11.4(a) the reconstruction from our stan-
dard projection data obtained by FBP for divergent beams with linear inter-
polation and sin¢ window (also called the Shepp Logan window). The visual
quality is similar to the best among the ART reconstructions that are reported,
which is shown in Fig. 11.4(d). According to the picture distance measures
ART is superior to FBP, and the same is true according to IROI with ex-
treme significance (the P-value is less than 10~'%). According to HITR, FBP
appears to be superior to ART, but the result is not particularly significant
(the P-value is 0.0400, which means that even if the null hypothesis that the
two methods are equally good were correct, there would be a 1 in 25 chance
of observing a difference greater than what we observed). This experiment
confirms the reports in the literature that ART with blobs, underrelaxation
and efficient ordering outperforms FBP.

Fig. 11.4: Reconstructions from the standard projection data using (a) FBP for
divergent beams with linear interpolation and sinc window (also called the Shepp -
Logan window), (b) ART with pixels, A*) = 0.05, 5Ith iteration, efficient ordering
and nonnegativity, (¢) ART with pixels, A%*) = 0.05, 57th iteration, efficient order-
ing and no nonnegativity, (d) ART with blobs, A® = 0.05, 57th iteration, efficient
ordering and no nonnegativity, (¢) ART with blobs, A**) = 1.0, 27th iteration, effi-
cient ordering and no nonnegativity, (f) ART with blobs, A = 0,05, 57th iteration,
sequential ordering and no nonnegativity.
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One thing is indisputable: the ART with blob reconstruction took nearly
19 times longer than FBI’. However, this should not be the determining factor.
The implementation of ART with blobs in SNARKAQ9 is far from optimal and
can be greatly improved. Also, computational speed keeps improving: the
time reported in the first edition of this book (1980) for the ART with pixel
reconstruction for a much smaller data set is 100 times longer than what we
report here! A main advantage of ART over FBP is its flexibility. Even though
in this section we have reported its application to data collected according to
the standard geometry, the theory supports reconstruction from data collected
over any set of lines. FBP-type algorithms need to be reinvented for each new
mode of data collection, just as we had to do when we moved from parallel
beams to divergent beams. Another aspect of the flexibility of ART is the
ability to incorporate tricks and thereby steer the process towards a solution
that is superior according to some criterion, such as TV.

In fact, ART can be used not only for superiorization but even for op-
timization of some fairly sophisticated functions. For example, the additive
ART algorithm deseribed in (11.39) and (11.40) converges to the Bayesian es-
timate & which minimizes (11.27). We delay the illustration of the usefulness
of this until Section 13.3, where we demonstrate it on the reconstruction of a
dynamic three-dimensional object, such as the heart.

Notes and References

ART for image reconstruction was first introduced into the open literature in
[99]. Coincidentally, essentially the same method had been already proposed
for CT in a patent specification [145], originally filed in 1968. In fact, the
simple procedure expressed in (11.2) was proposed in 1937 by S. Kaczmarz
[154] for solving systems of consistent linear equations. An early tutorial on
ART is [98|, a more recent one is [117]. The methods discussed in this chapter
are examples of the so-called row-action methods for solving very large sparse
systems of equations and inequalities; for a survey, see [41, 46] and Chapter 6
of [48]. Such methods can be extended from finding common points of hyper-
planes and half-spaces. as we discuss in this hook, to finding common points
of arbitrary closed convex sets (this is often referred to as POCS, short for
projections onto convex sets); see, for example, Chapter 5 of [48] and [21].
An ART algorithm of this kind with a finite convergence property is ART3,
described by [110]; for a faster version with an application to intensity mod-
ulated radiation therapy see [120].

Fig. 11.5: Plots of the head phantom of Fig. 4.6(a), shown light, and its reconstruc-
tions, shown dark, from the standard projection data using ART with A'¥) = 0.05,
efficient ordering and (a) pixels, 57th iteration and nonnegativity, and (b) blobs,
57th iteration and no nonnegativity.
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Our presentation of the relaxation method for solving systems of inequali-
ties and equalities is based on [127] and [130], which reference earlier literature.
The minimum norm theorem is a trivial consequence of what in optimization
theory is referred to as the projection theorem (not to be confused with the
theorem of the same name in image reconstruction); see, e.g., [190]. A relax-
ational approach to finding the minimum norm solution of systems of inequal-
ities is presented in [177]. How such an approach translates into an algorithm
for image reconstruction is discussed in [129].

Our discussion of the Bayesian approach is based on [123] and [124]; the
former gives a detailed discussion of the validity of the assumptions made in
the Bayesian approach. It can be generalized to minimize more complicated
quadratic functions than the one in (11.27), see Appendix B of [185].

The expression “tricks” was first applied to the processes described in Sec-
tion 11.4 in [127]. A treatment of the asymptotic behavior of iterative algo-
rithms combined with the trick of selective smoothing is given in |64]. An
algorithm that finds the minimum norm solution of the combined systems
(11.41) and (11.46) is described in [129]; see also [220]. An algorithm for re-
constructing objects with only two densities was given in [109]; the problem
of reconstruction assuming only a few densities has developed into the field
of discrete tomography [123]. The notion of superiorization, in particular in
conjunction with total variation minimization, was introduced in [36]; see also
[121]. A demonstration of the power of underrelaxation is given in [114]: it is
shown that the trick of using a complimentary matrix (not discussed in this
book) can be incorporated into ART as a special case of underrelaxation.

A theoretical study of the order in which views should be selected in ART
was published in [106]. That paper, and its references, are also of interest, since
they use a model for the image reconstruction problem different from anything
discussed in this book. The outcome is an iterative procedure, which deals
with pictures (as opposed to image vectors). Such procedures were referred to
as continuous ART in [127]. The efficient ordering that we have proposed in
Section 11.4 was first advocated in |135].

Some versions of ART that are not in this book are discussed in |98,
127]. Multiplicative ART (MART) is of particular interest, since it maximizes
entropy (6.44), as proved in [176] and in [178]. MART is still the subject of
active research and use [149, 162, 273, 275|. Another row-action optimization
algorithm is RAMLA [34] that maximizes likelihood as defined in (6.47).

An alternative is block-ART that instead of treating single equations or
inequalities one by one, tries to satisfy simultaneously a number of them (e.g.,
all that are associated with a single source position in the standard geometry).
An early example of such an approach is [73]. The idea was rediscovered
in [147], using the name ordered subsets, and became popular in emission
tomography. Examples of recent papers on block-ART are [45, 47, 121].

For methods of accelerating algorithms of the type discussed above by
using commonly available hardware see [23, 206, 274| and their references.
For another recent implementational approach see [214].
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