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1 Introduction

Tomography is a branch of science that involves the study of three dimen-
sional structures with the help of two dimensional sections or slices. The word
tomography originates from Ancient Greek words τ óµoς - tomos -, which
means slice or section and γραϕω - grapho -, which means to write or, in this
context, to describe. Thus the word tomography means something to describe
with sections. For example in geology when a piece of stone or mineral is cut
into thin pieces to reveal the inner structure, or in pathology a series of thin
segments of an organ is produced to retrieve three dimensional information
then it’s considered a kind of tomography. However there are many situations
when we don’t want to or unable to cut the object. For example if the piece
of stone is an important fossil or the organ is inside a living body. Another
example is nondestructive testing used in science and technology industry to
evaluate the properties of a material, component or system without causing
damage. In such situations computed tomography comes to the rescue, when
the cross-section are not physically made, but only computed with the help
of measurements on some physical property. The most widely known appli-
cation is X-ray transmission computed tomography, also know as CT, which
is a medical imaging technique used in radiology. It’s based on the fact that
when x-ray photons enter a piece of material, then some of the photons are
absorbed or scattered, but rest of then are transmitted through. The ratio
of the amount of photons transmitted over the total number photons heavily
depends on the energy of the photons and the type of the material. This
is called the attenuation value of that piece of material at a fixed energy.
During X-ray transmission computed tomography images of cross sections of
the human body are produced from data obtained by measuring the attenu-
ation of x-rays along a large number of lines through the cross section. The
measurement of the attenuation of x-ray along a line gives an estimate of
the line integral of the attenuation values of all pieces of material along that
line. Thus to produce an image of the cross section we need to know how
to reconstruct it from the estimates of its line integrals along finite number
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of lines of known locations. This is a true mathematical problem and the
current text is mainly devoted to reveal the mathematical tools required for
the reconstruction.

Most people think immediately on a medical imaging technique when com-
puted tomography (CT) is mentioned, however other kind of objects can be
put inside a CT scanner. Computed tomography has been found useful in non-
destructive testing. A collection of transmission beam neutron radiographs
can be used to reconstruct (and hence inspect) objects such as turbine blades
and even whole engines, which shouldn’t be destroyed. The use of neutron
beam is due to the fact that such metallic objects are not penetrated well
by x-rays. Another discipline where computed tomography can be used is
electron crystallography to determine the arrangement of atoms in solids.
Emission tomography is somewhat different, since it’s not the attenuation of
a transmitted wave from an outer source is measured, but instead the amount
of electromagnetic radiation emitted from inside the object. In medical imag-
ing emission tomography is used for the quantitative determination of the
moment-to-moment changes in the chemistry and flow physiology of injected
or inhaled compounds labeled with radioactive atoms. However emission to-
mography can be used in astrophysics too. We demonstrate now how image
reconstruction from projections can be used in such situation.

Let’s assume that we are interested in the distribution of radio sources of
a small rectangular area of the sky. Unfortunately existing instruments for
the detection of radio waves are of too low resolution, and thus we’re able
to measure only the total amount of radio waves emitted by radio sources in
that rectangular area. That, of course, can’t help us to record any details.
However, if the moon regularly moves across the portion of the sky that is of
interest, then it can help us. We assume that the rectangular area is so small
compared to the moon, that the portion of the outline of the moon inside the
rectangle can’t be distinguished from a straight line. As the moon crosses over
the rectangular area, we measure the total intensity of radio waves emitted by
the uncovered part in discrete time steps. Subtraction of the measured value
of the total intensity at any time instance from the measured value of the
total intensity at the next time instance provides us with the total intensity
in each of a set of parallel abutting thin strips of known locations. Then we
estimate the line integral of the intensity along the central lines of these strips
by dividing the total intensity along the strip by the width of the strip. A
set of estimated line integrals along lines parallel to each other is called a
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view. The direction of the paths of the moon across the sky vary, providing
us with a number of views. From a large number of views the two-dimensional
distribution of radio sources can be reconstructed.

Now let’s demonstrate the mathematical tools of reconstruction on a small
problem. Let the rectangle R = [0, 4]× [0, 3] be given, whose sides are parallel
to the coordinate directions and whose projection onto the x-axis is the [0, 4]
interval and the projection onto the y-axis is the [0, 3] interval. Divide the
rectangle R into the union of twelve non-overlapping rectangles (or squares
actually)

R1,1 = [0, 1]× [2, 3] R2,1 = [0, 1]× [1, 2] R3,1 = [0, 1]× [0, 1]
R1,2 = [1, 2]× [2, 3] R2,2 = [1, 2]× [1, 2] R3,2 = [1, 2]× [0, 1]
R1,3 = [2, 3]× [2, 3] R2,3 = [2, 3]× [1, 2] R3,3 = [2, 3]× [0, 1]
R1,4 = [3, 4]× [2, 3] R2,4 = [3, 4]× [1, 2] R3,4 = [3, 4]× [0, 1]

Figure 1.1: The screen R, the pixels Ri,j , and the lines l1, l2, l3 (blue), lines
l4, l5, l6, l7 (red), lines l9, l9, l10, l11, l12, l13 (green)

We may call the rectangle R the screen, and the squares Ri,j the pixels.
Let the point Pi,j denote the center of the square Ri,j for all i ∈ {1, 2, 3} and
j ∈ {1, 2, 3, 4}. These are
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Consider three direction vectors v1 = (1, 0), v2 = (0, 1) and v3 = (1, 1) define
the lines l1, l2, l3 that are all parallel to v1 = (1, 0) and passing through the
points P1,1, P2,1 and P3,1 respectively (see blue lines in Figure 1.1). Also
define the lines l4, l5, l6, l7 that are all parallel to v2 = (0, 1) and passing
through the points P3,1, P3,2, P3,3 and P3,4 respectively (see red lines in Figure
1.1). Furthermore take the lines l8, l9, l10, l11, l12, l13 that are all parallel to
v3 = (1, 1) and passing through the points P1,1, P2,1, P3,1, P3,2, P3,3, and P3,4

respectively (see green lines in Figure 1.1).
Assume that the exact values of line integrals of some unknown function

f defined on the rectangle R are known along the lines lk, k ∈ {1, 2, . . . , 13}.
The functions f can be the two-dimensional distribution of some physical
property, like x-ray attenuation values or intensity of light or other electro-
magnetic radiation. Let mk denote the value of the line integral of f along
the line lk. These values are

m1 = 3, m2 = 2, m3 = 2,
m4 = 2, m5 = 2, m6 = 2, m7 = 1,

m8 =
√

2, m9 =
√

2, m10 = 2
√

2, m11 = 2
√

2, m12 =
√

2, m13 = 0.

We would like to define a function g over the rectangle R which takes the con-
stant value xi,j over the square Ri,j for each i ∈ {1, 2, 3} and j ∈ {1, 2, 3, 4},
and whose line integral along the line lk equals to mk for all k ∈ {1, 2, . . . , 13}.
The question is how to choose the values of xi,j to ensure that the line inte-
grals equal to the values mk.

The line integral of a constant function along a straight line segment equals
to the length of the segment multiplied with the constant value of the func-
tion. Since the squares Ri,j don’t overlap and their union covers the rectangle
R, we can calculate the line integral of the function g along the line lk by
taking the sum of the values xi,j multiplied by the length of the intersection
of lk with the square Ri,j . It may happen that lk doesn’t intersect some of
the squares and the corresponding values xi,j are multiplied by zero.

Now l1 intersects only the squares R1,1, R1,2, R1,3 and R1,4, each in a line
segment of length equal to 1. Hence the values x1,1, x1,2, x1,3, x1,4 must satisfy
the linear equation

x1,1 + x1,2 + x1,3 + x1,4 = m1

Similarly l2 intersects only the squares R2,1, R2,2, R2,3 and R2,4, and l3 in-
tersects only the squares R3,1, R3,2, R3,3 and R3,4 in line segments of length
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equal to 1. Hence the values x2,1, x2,2, x2,3, x2,4 and x3,1, x3,2, x3,3, x3,4 must
satisfy

x2,1 + x2,2 + x2,3 + x2,4 = m2

and

x3,1 + x3,2 + x3,3 + x3,4 = m3

The line l4 intersects the squares R1,1, R2,1, R3,1, the line l5 intersects the
squares R1,2, R2,2, R3,2, the line l6 intersects the squares R1,3, R2,3, R3,3, and
the line l7 intersects the squares R1,4, R2,4, R3,4. Each time the length of the
intersection equals to 1. Thus these provide the following linear equations:

x1,1 + x2,1 + x3,1 = m4

x1,2 + x2,2 + x3,2 = m5

x1,3 + x2,3 + x3,3 = m6

x1,4 + x2,4 + x3,4 = m7

Furthermore the line l8 intersects only the square R1,1. The line l9 intersects
the squares R2,1 and R1,2, the line l10 intersects the squares R3,1, R2,2, R1,3,
the line l11 intersects the squares R3,2, R2,3, R1,4, the line l12 intersects the
squares R3,3 and R2,4, finally the line l13 intersects only the square R3,4.
This time the length of each intersection equals to

√
2. Thus they imply the

following equations

√
2x1,1 = m8√

2x1,2 +
√

2x2,1 = m9√
2x1,3 +

√
2x2,2 +

√
2x3,1 = m10√

2x1,4 +
√

2x2,3 +
√

2x3,2 = m11√
2x2,4 +

√
2x3,3 = m12√
2x3,4 = m13

Collecting all the above equations and substituting the values mk on the
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right-hand-sides we have a system of linear equations.

x1,1 + x1,2 + x1,3 + x1,4 = 3
x2,1 + x2,2 + x2,3 + x2,4 = 2
x3,1 + x3,2 + x3,3 + x3,4 = 2

x1,1 + x2,1 + x3,1 = 2
x1,2 + x2,2 + x3,2 = 2
x1,3 + x2,3 + x3,3 = 2
x1,4 + x2,4 + x3,4 = 1√

2x1,1 =
√

2√
2x1,2 +

√
2x2,1 =

√
2√

2x1,3 +
√

2x2,2 +
√

2x3,1 = 2
√

2√
2x1,4 +

√
2x2,3 +

√
2x3,2 = 2

√
2√

2x2,4 +
√

2x3,3 =
√

2√
2x3,4 = 0



(1.1)

We need to find the solution of the above system to find appropriate values
of xi,j . Systems of linear equations can be solved with the help of Gauss
elimination, which is discussed in the later sections. This system has more
than one solution. More precisely we can choose arbitrary values for x3,2 and
x3,3, and then all other variables can be given in terms of these two in the
following way.

x1,1 = 1 x2,1 = −1 + x3,2 + x3,3 x3,1 = 2− x3,2 − x3,3
x1,2 = 2− x3,2 − x3,3 x2,2 = x3,3 x3,2 = x3,2
x1,3 = x3,2 x2,3 = 2− x3,2 − x3,3 x3,3 = x3,3
x1,4 = x3,3 x2,4 = 1− x3,3 x3,4 = 0

However if the unknown function f is the two-dimensional distribution of the
x-ray attenuation values or intensity of some electromagnetic radiation, then
we’re interested only in the non-negative solutions of the system. This means
we can choose only such values of the variables xi,j that satisfy the following
system of linear inequalities.

x3,2≥ 0
x3,3≥ 0

−1 + x3,2 + x3,3≥ 0
2− x3,2 − x3,3≥ 0

1− x3,3≥ 0


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This can be rearranged as

x3,2≥ 0
x3,3≥ 0
x3,3≥ 1− x3,2

2− x3,2≥x3,3
1≥x3,3


We see that x3,3 must be not less than 0 and 1 − x3,2, on the other hand it
must be not more than 1 and 2 − x3,2. Here 1 − x3,2 ≤ 2 − x3,2 is always
satisfied. Thus the system may have a solution only if

0≤ 2− x3,2
1− x3,2≤ 1

}
and besides these x3,2 must be non-negative. If we rearrange the above equa-
tions, then

x3,2≤ 2
0≤x3,2

}
These give a lower and upper bound for x3,2 and then we obtain a lower and
upper bound for x3,3 as well.

0≤ x3,2 ≤ 2
max {0, 1− x3,2}≤ x3,3 ≤min {2− x3,2, 1}

Finally we can conclude that all the non-negative solutions of the system of
linear equations 1.1 are those that satisfy

x1,1 = 1 x2,1 = −1 + x3,2 + x3,3 x3,1 = 2− x3,2 − x3,3
x1,2 = 2− x3,2 − x3,3 x2,2 = x3,3 x3,2 = x3,2
x1,3 = x3,2 x2,3 = 2− x3,2 − x3,3 x3,3 = x3,3
x1,4 = x3,3 x2,4 = 1− x3,3 x3,4 = 0

where
0≤ x3,2 ≤ 2

max {0, 1− x3,2}≤ x3,3 ≤min {2− x3,2, 1}

If we think that the unknown function f is the two-dimensional distribution
of x-ray attenuation values, then the variables xi,j can’t be larger than 1, as
the x-ray attenuation value is the number of x-ray photons transmitted over
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the total number of photons. Thus besides non-negativity another restriction
on the values can be that all xi,j should be not larger than 1. If we add the
this new restriction to the system, then we have

x3,2≥ 0
x3,3≥ 0

−1 + x3,2 + x3,3≥ 0
2− x3,2 − x3,3≥ 0

1− x3,3≥ 0
x3,2≤ 1
x3,3≤ 1

−1 + x3,2 + x3,3≤ 1
2− x3,2 − x3,3≤ 1

1− x3,3≤ 1


This can be rearranged as

x3,2≥ 0
x3,3≥ 0
x3,3≥ 1− x3,2

2− x3,2≥x3,3
1≥x3,3

x3,2≤ 1
x3,3≤ 1
x3,3≤ 2− x3,2

1− x3,2≤x3,3
0≤x3,3


Turning each inequality int less-than-or-equal form and deleting the doubles
gives

0≤x3,2
0≤x3,3

1− x3,2≤x3,3
x3,3≤ 2− x3,2
x3,3≤ 1
x3,2≤ 1


Thus we have only one inequality which isn’t part of the system when we only
assumed non-negativity. This new inequality is x3,2 ≤ 1. Hence the upper and
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lower bounds we obtain for x3,2 and x3,3 are

0≤ x3,2 ≤ 1
max {0, 1− x3,2}≤ x3,3 ≤min {2− x3,2, 1}

Here max {0, 1− x3,2} = 1 − x3,2 as x3,2 ≤ 1, and min {2− x3,2, 1} = 1
because of the same reason. Thus the above bounds can be simplified as

0≤ x3,2 ≤ 1
1− x3,2≤ x3,3 ≤ 1

Finally we can conclude that all the non-negative solutions of the system of
linear equations 1.1 are those that satisfy

x1,1 = 1 x2,1 = −1 + x3,2 + x3,3 x3,1 = 2− x3,2 − x3,3
x1,2 = 2− x3,2 − x3,3 x2,2 = x3,3 x3,2 = x3,2
x1,3 = x3,2 x2,3 = 2− x3,2 − x3,3 x3,3 = x3,3
x1,4 = x3,3 x2,4 = 1− x3,3 x3,4 = 0

where
0≤ x3,2 ≤ 1

1− x3,2≤ x3,3 ≤ 1

Among these the integer solutions are the following.

1. If x3,2 = 0, then x3,3 = 1 and

x1,1 = 1 x1,2 = 1 x1,3 = 0 x1,4 = 1
x2,1 = 0 x2,2 = 1 x2,3 = 1 x2,4 = 0
x3,1 = 1 x3,2 = 0 x3,3 = 1 x3,4 = 0

9



2. If x3,2 = 1 and x3,3 = 0, then

x1,1 = 1 x1,2 = 1 x1,3 = 1 x1,4 = 0
x2,1 = 0 x2,2 = 0 x2,3 = 1 x2,4 = 1
x3,1 = 1 x3,2 = 1 x3,3 = 0 x3,4 = 0

3. If x3,2 = 1 and x3,3 = 1, then

x1,1 = 1 x1,2 = 0 x1,3 = 1 x1,4 = 1
x2,1 = 1 x2,2 = 1 x2,3 = 0 x2,4 = 0
x3,1 = 0 x3,2 = 1 x3,3 = 1 x3,4 = 0

Furthermore if x3,2 = 1
2 and x3,3 = 1

2 , then a non-integer solution is

x1,1 = 1 x1,2 = 1 x1,3 = 1
2 x1,4 = 1

2
x2,1 = 0 x2,2 = 1

2 x2,3 = 1 x2,4 = 1
2

x3,1 = 1 x3,2 = 1
2 x3,3 = 1

2 x3,4 = 0
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2 Mathematical preliminaries

2.1 Matrices

A matrix is a rectangular array of numbers arranged in rows and columns.
The numbers in a matrix are called entries or elements and we can refer
to the entries with a pair of indices, the row index and and column index.
The row are indexed by positive integers from top to the bottom starting
with 1. Columns are indexed by positive integers from left to right starting
with 1. Matrices are often denoted by capital latin letters, while their entries
are denoted by the corresponding lower case letter with a pair of subscript
indices. First we write the row index and then the column index separated
by a comma. An example of a matrix is the following:

A =

1 2 −1 0
3 4 0 −2
0 1 1 5


The matrix A above has 3 rows and 4 columns. We can refer to the entry in
the 2nd row and 3rd column as a2,3 and it equals to 0, while the entry in the
3rd row and 2nd column is referred as a3,2 and it equals to 1. We note here
that if the matrix is not too large and it makes no confusion we can omit the
comma between the row and column indices, thus we can refer to the above
entries as a23 and a32 too. In a larger matrix we refer to the the entry in the
i-th row and j-th column as ai,j or aij . The notation

A = (aij)

is used when we would like to refer to or denote the element of the matrix A
in the i-th row and j-th column as aij . This notation is used only when it’s
clear what are the ranges of the indices i and j (i.e. what is the number of
rows and the number of columns). Otherwise we can specify a matrix with
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m rows and n columns as

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


If a matrix has m rows and n columns then we say the size (or dimension) of
the matrix is m×n. The sample matrix A above has size 3×4. The set of all
real matrices (i.e. matrices whose entries are real numbers) with m rows and
n columns is denoted byMm×n (R). A matrix with the same number of rows
and columns is called a square matrix. The set of all real square matrices
with n rows and n columns is denoted by Mn (R).

2.1.1 Matrix operations

Now we define the basic matrix operations such as addition, scalar multipli-
cation and transposition.

Definition 1 Let a A,B ∈ Mm×n (R) be two matrices of size m × n. The
sum of A and B is the matrix C ∈Mm×n (R) of size m× n which satisfies

cij = aij + bij

if A = (aij), B = (bij) and C = (cij). The sum of the matrices A and B is
denoted by A+B.

Note that the sum of two matrices can be defined only if they have the
same size.

Definition 2 Let a A ∈Mm×n (R) be a matrix of size m× n and let λ ∈ R
(lambda) be a real number. The product of the matrix A with the number
λ is the matrix C ∈Mm×n (R) of size m× n which satisfies

cij = λ · aij

if A = (aij) and C = (cij). The product of the matrix A with the number λ
is denoted by λ ·A or shortly λA if it makes no confusion.
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The above operation is called scalar multiplication, but make sure to
not confuse it with scalar product which is a different operation defined for
vectors. The real number λ in the scalar multiplication is often called scalar
(thus the name).

Theorem 1 The addition and scalar multiplication of matrices have the fol-
lowing properties.

1. (A+B) + C = A+ (B + C) for any matrices A,B,C ∈Mm×n (R).

2. There exists a zero matrix of size m × n denoted by 0m×n which
satisfies A+ 0m×n = A for any matrix A ∈Mm×n (R).

3. For any matrix A ∈ Mm×n (R) there exists an opposite matrix of size
m× n denoted by −A which satisfies A+ (−A) = 0m×n.

4. A+B = B +A for any matrices A,B ∈Mm×n (R).

5. λ(A+B) = λA+λB for any matrices A,B ∈Mm×n (R) and any scalar
λ ∈ R.

6. (λ + µ)A = λA + µB for any matrix A ∈ Mm×n (R) and any scalars
λ, µ ∈ R (lambda and mu).

7. (λ · µ)A = λ (µA) = µ (λA).

Examples.

The zero matrix of size 2× 3 is

02×3 =

(
0 0 0
0 0 0

)
Furthermore let

A =

(
1 2 −1
3 4 0

)
and B =

(
2 −4 0
−1 1 3

)
Then

A+B =

(
1 + 2 2− 4 −1 + 0
3− 1 4 + 1 0 + 3

)
=

(
3 −2 −1
2 5 3

)
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−A =

(
−1 −2 1
−3 −4 0

)
−B =

(
−2 4 0
1 −1 −3

)
3 ·A =

(
3 · 1 3 · 2 3 · (−1)
3 · 3 3 · 4 3 · 0

)
=

(
3 6 −3
9 12 0

)
(−2) ·B =

(
(−2) · 2 (−2) · (−4) (−2) · 0

(−2) · (−1) (−2) · 1 (−2) · 3

)
=

(
−4 8 0
2 −2 −6

)
Definition 3 Let a A ∈Mm×n (R) be a matrix of size m× n and let λ ∈ R
(lambda) be a real number. The transpose of the matrix A the matrix
B ∈Mn×m (R) of size n×m which satisfies

bij = λ · aji

if A = (aij) and B = (cij). The transpose of the matrix A is denoted by A>.

As an example let

A =

(
1 2 −1
3 4 0

)
Then

A> =

 1 3
2 4
−1 0


A square matrix A ∈ Mn (R) is called symmetrical if A = A>. For example
the matrix

A =

1 2 3
2 −5 0
3 0 −1


is a symmetrical matrix.

Theorem 2 Let A,B ∈ Mm×n (R) be arbitrary matrices of size m× n and
let λ ∈ R be an arbitrary scalar. Then

1. (A+B)> = A> +B>,

2. (λA)> = λA>,

3.
(
A>
)>

= A.

16



2.1.2 Matrix multiplication

The addition and scalar multiplication of matrices defined in the previous
section are calculated elementwise. This means that if we want to add the
matrices A and B, then we only need to add the corresponding elements.
Similarly to multiply a matrix by a scalar we need to multiply each element
of the matrix with that scalar. Now we introduce the product of two matrices,
which is defined in a different manner (not elementwise).

Definition 4 Let a A ∈ Mm×n (R) be a matrix of size m × n and B ∈
Mn×l (R) be a matrix of size n× l. The product of A and B is the matrix
C ∈Mm×l (R) of size m× l which satisfies

cij =

n∑
k=1

aik · bkj

if A = (aij), B = (bij) and C = (cij). The product of the matrices A and B
is denoted by A ·B or shortly AB.

Note that the product of A and B is defined only if A has the same number
of columns as the the number of rows of B. Note also that the element of the
product matrix in the i-th row and j-th column is computed as the product
of the i-th row of A and the j-th column of B in the same manner as the dot
product of two n-dimensional vectors are defined. To see an example let

A =

1 2 −1 0
3 4 0 −2
0 1 1 5

 and B =


2 −1
−1 1
0 3
1 2


Then the product matrix is A ·B = C = (cij), where

c11 =

4∑
k=1

a1k · bk1 = a11 · b11 + a12 · b21 + a13 · b31 + a14 · b41

= 1 · 2 + 2 · (−1) + (−1) · 0 + 0 · 1 = 0

c12 =
4∑

k=1

a1k · bk2 = a11 · b12 + a12 · b22 + a13 · b32 + a14 · b42

= 1 · (−1) + 2 · 1 + (−1) · 3 + 0 · 2 = −2
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c21 =

4∑
k=1

a2k · bk1 = a21 · b11 + a22 · b21 + a23 · b31 + a24 · b41

= 3 · 2 + 4 · (−1) + 0 · 0 + (−2) · 1 = 0

c22 =

4∑
k=1

a2k · bk2 = a21 · b12 + a22 · b22 + a23 · b32 + a24 · b42

= 3 · (−1) + 4 · 1 + 0 · 3 + (−2) · 2 = −3

c31 =
4∑

k=1

a3k · bk1 = a31 · b11 + a32 · b21 + a33 · b31 + a34 · b41

= 0 · 2 + 1 · (−1) + 1 · 0 + 5 · 1 = 4

c32 =
4∑

k=1

a3k · bk2 = a31 · b12 + a32 · b22 + a33 · b32 + a44 · b42

= 0 · (−1) + 1 · 1 + 1 · 3 + 5 · 2 = 14

Thus

A ·B =

c11 c12
c21 c22
c31 c32

 =

0 −2
0 −3
4 14


Until you are not experienced in the multiplication of matrices it makes easier
to calculate the product if you arrange the factors A and B not next to each
other, but A to the bottom left and B to the top right position of a 2-by-2
arrangement. Then the product matrix is written in the bottom right position
as the following formula shows. 

2 −1
−1 1
0 3
1 2


1 2 −1 0

3 4 0 −2
0 1 1 5

 0 −2
0 −3
4 14


Theorem 3 The multiplication of matrices has the following properties.
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1. A · (B ·C) = (A ·B) ·C for any matrices A,B,C with appropriate sizes.

2. There exists an identity matrix of size n× n denoted by In, which sat-
isfies In ·A = A · In = A for any square matrix A of size n× n.

3. A · (B + C) = A ·B +A · C for any matrices A,B,C with appropriate
sizes.

4. (A+B) · C = A · C +B · C for any matrices A,B,C with appropriate
sizes.

5. λ(A ·B) = (λA) ·B = A · (λB) for any scalar λ ∈ R and any matrices
A,B with appropriate sizes.

Examples:

The identity matrices of size 2× 2 and 3× 3 are

I2 =

(
1 0
0 1

)
and I3 =

1 0 0
0 1 0
0 0 1


The identity matrix of size n× n is

In =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1


We can also define the identity matrix with the help of the Kronecker-delta,
which is

δij =

{
1, if i = j,

0, if i 6= j.

Then the identity matrix of size n× n is In = (δij).

Consider now the following matrices.

A =

(
1 −1
−2 2

)
B =

(
1 2 −1
3 4 0

)
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C =

2 0
1 3
0 −1

 D =

(
1 −1
1 −1

)
Then

A ·B =

(
−2 −2 −1
4 4 2

)
but the product B · A doesn’t exist as B has 3 columns and A has 2 rows.
Similarly the product A · C doesn’t exist as A has 2 columns and C has 3
rows, but the product C ·A exists and

C ·A =

 2 −2
−5 5
2 −2


Both of the products B · C and C ·B exist

B · C =

(
4 7
10 12

)
and C ·B =

 2 4 −2
10 14 −1
−3 −4 0


but B · C 6= C · B as these product don’t even have the same size. Similarly
both of the products A ·D and D ·A exist

A ·D =

(
0 0
0 0

)
and D ·A =

(
3 −3
3 −3

)
but A ·D 6= D ·A even though these products have the same size. Finally we
see that

A2 = A ·A =

(
3 −3
−6 6

)
and D2 = D ·D =

(
0 0
0 0

)
An important note is that if we interchange the factors in the multiplication

of matrices, then the product may be undefined (see A ·B and B ·A, or A ·C
and C · A above), but even if both products are defined it may happen that
they don’t equal (see B · C and C · B, or A · D and D · A). In fact if we
randomly take two square matrices of size n×n, A and B (this ensures, that
both A ·B and B ·A are defined and have the same size), then it’s very likely
that A ·B 6= B ·A.
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Another interesting property of the multiplication of matrices is that it
may happen that none of the matrices A and B is the zero matrix, but their
product is the zero matrix (see A · D above). Note that this is a property
which is not valid for the multiplication of real numbers, since if a, b ∈ R and
a · b = 0, then a = 0 or b = 0 (this is called the zero-product property). We
can go even further as there exist a nonzero matrix whose square (i.e. the
product with itself) is the zero matrix (see D2 above).

2.1.3 Matrices of special shape

We already introduced square matrices (i.e. matrices with the same number
of rows and columns) in the above sections. Now we define further matrices
of special shape. First of all lets mention that a single column matrix (which
has only one column) with n rows, or a single row matrix (which has only
one row) with n columns can be identified as an element of the n-dimensional
coordinate space Rn, whose elements are often called vectors. Thus a single
column matrix is called a column vector, while a single row matrix is called
a row vector. Note that the transpose of a column vector is a row vector
and the transpose of a row vector is a column vector. In the rest of the text
we apply the convention that if nothing else said then by a vector we always
mean a column vector. Now let’s see further matrices of special shape.

Definition 5 Let A ∈ Mn×n (R), A = (aij) be a matrix of size n. The
diagonal of A is the sequence of its elements with equal row and column
indices, i.e. a11, a22, a33, . . . , ann. The matrix A is called diagonal matrix
if all elements of A not contained in the diagonal equal to zero, i.e. aij = 0 if
i 6= j. The matrix A is called upper triangular matrix if all elements of A
below the diagonal equal to zero, i.e. aij = 0 if i > j. The matrix A is called
lower triangular matrix if all elements of A above the diagonal equal to
zero, i.e. aij = 0 if i < j.

We note that a diagonal matrix may contain zeros in the diagonal too. Sim-
ilarly an upper triangular matrix may have zeros in and above the diagonal,
just as a lower triangular matrix may have zeros in and below the diagonal.
As examples the zero matrix and the identity matrix can be considered as
diagonal, upper triangular or lower triangular matrix. Further instances are
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the following.

A =

2 0 0
0 −1 0
0 0 0

 B =

1 2 −2
0 0 −1
0 0 3

 C =

−1 0 0
4 0 0
0 3 2


Above the matrix A is diagonal (and also upper and lower triangular), B is
upper triangular, C is lower triangular.

Definition 6 Let A ∈ Mm×n (R), A = (aij) be a matrix. If the i-th row of
A contains at least one nonzero element, then the leftmost nonzero element
is called the pivot element of the i-th row. We say that the matrix is A in a
row echelon form if all rows consisting of only zeros are at the bottom and
the pivot element of any row (except the first) is strictly to the right from the
pivot element of the previous row. In other words A in a row echelon form if
considering the pivot elements from the top to the bottom, the column indices
of the pivot elements form a strictly increasing sequence. Furthermore we say
A is in reduced row echelon form if it’s in row echelon form, all pivot
elements equal to 1, and each column containing a pivot element has zeros in
all other entries.

Consider the following matrices.

A =

1 0 −2 3
0 0 3 5
0 2 −4 0

 B =


0 3 4 0
0 0 1 −2
0 0 2 5
0 0 0 0



C =

−1 1 0 0
0 3 4 −1
0 0 0 2

 D =


1 0 4 0
0 1 −1 0
0 0 0 1
0 0 0 0


Here A in not in row echelon form since the pivot element of the second row
has column index 3, but the pivot element of the third row has column index
2. B in not in row echelon form also, since the column indices of the pivot
elements in the second and third rows equal. C is in row echelon form, but
not reduced echelon form, since none of the pivot elements equal to 1, and
furthermore the second column and fourth column contain nonzero entries
besides the pivot element. The matrix D is in reduced row echelon form.
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2.1.4 Elementary row operations

We will see in the later chapters that matrices of reduced row echelon form
have an important role in the solution of systems of linear equations. Thus
now we introduce elementary row operations that can be applied to transform
a matrix into reduced row echelon form.

Definition 7 The elementary row operations are the following.

1. Interchange two rows of a matrix.

2. Multiply each element of a row in a matrix with a nonzero scalar λ ∈ R.

3. Add each element of a row of a matrix to the corresponding elements
of another row.

4. As a combination of the above two we can add each element of a row
multiplied by λ ∈ R to the corresponding elements of another row.

Note that during the last operation if we add λ-times the i-th row the
j-th row, then only the entries of the j-th row are modified, while the i-t row
remain unchanged. Note also that if we multiply a row with the multiplicative
inverse nonzero scalar λ ∈ R, then it has the same result as if we divide with
λ ∈ R. Thus the second elementary row operation means that we can also
divide each element of a row in a matrix with a nonzero scalar λ ∈ R.

Theorem 4 We can transform any matrix A ∈ Mm×n (R) into a matrix
of reduced row echelon form with the help of finitely many elementary row
operations.

Now we give a sketch of the proof of the above theorem by telling what
steps are required to achieve the reduced row echelon form. The procedure,
that transforms an arbitrary matrix to a matrix in reduced row echelon from
with the help of elementary row operations, is called Gaussian elimination.

First let A ∈ Mm×n (R) be an arbitrary matrix. Let k be the counter of
how many pivot elements we found. Set the initial value of k to zero. Let Bk

denote the part of A below the k-th row. At the beginning, when k = 0 let
B0 = A. Now follow the steps below to transform A into a matrix of reduced
row echelon form.
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1. If Bk is the zero matrix, then A is in reduced row echelon form and the
procedure terminates.

2. Otherwise let j be the column index of the leftmost nonzero column of
Bk.

3. If the first element of the j-th column of Bk is zero, then look for a
row in Bk which contains a nonzero element in the j-th column and
interchange it with the first row of Bk (i.e. with the k+ 1-th row of A).

4. Divide each element of the k + 1-th row of A with ak+1,j .

5. Add −aij-times the k + 1-th row to the i-th row of A for all i ∈
{1, 2, . . . ,m}, i 6= k + 1.

6. Increase the value of the counter k by 1.

7. Repeat steps (1)-(6) until the procedure terminates in step (1) or k is
increased to n.

The above procedure transforms any matrix A ∈Mm×n (R) into a matrix
of reduced row echelon form. Let’s illustrate the procedure on the following
matrix.

A =


0 0 3 9 1 −1
0 3 2 3 0 4
0 −2 1 5 1 −3
0 1 0 −1 0 2
0 0 −1 −3 1 3


First k = 0 and B0 = A is not the zero matrix. The leftmost nonzero column
is the second column. The first element of the second column is zero, thus
we need to choose a row whose entry in the second column is nonzero. Let’s
choose the second row. Now we interchange the first and second row of A.
This step is denoted as follows.

A =


0 0 3 9 1 −1
0 3 2 3 0 4
0 −2 1 5 1 −3
0 1 0 −1 0 2
0 0 −1 −3 1 3

 R1↔R2−−−−−→


0 3 2 3 0 4
0 0 3 9 1 −1
0 −2 1 5 1 −3
0 1 0 −1 0 2
0 0 −1 −3 1 3



24



Note that we don’t write equality between the above matrices, because they
are not the same, but they are similar in some sense. In the above procedure
we refer to this new matrix as A, since we assume that the new matrix
overwrites A. Now we apply the same notation, i.e. when we refer to an
element of A, then we always mean the latest version of the matrix. The next
step is to divide each element of the first row of A with a12 = 3. This step is
denoted as follows.

0 3 2 3 0 4

0 0 3 9 1 −1

0 −2 1 5 1 −3

0 1 0 −1 0 2

0 0 −1 −3 1 3


1
3
·R1
−−−→


0 1 2

3 1 0 4
3

0 0 3 9 1 −1

0 −2 1 5 1 −3

0 1 0 −1 0 2

0 0 −1 −3 1 3


Now we add −a22 = 0-times the first row to the second row, −a32 = 2-times
the first row to the third row, −a42 = −1-times the first row to the fourth
row, and −a52 = 0-times the first row to the fifth row. However note that if
we add 0-times a row to another row, then nothing changes, thus it’s enough
to work with those rows, which contain a nonzero element in the second
column. Considering this we only add 2-times the first row to the third row,
and (−1)-times the first row to the fourth row. This step is denoted as follows.

0 1 2
3 1 0 4

3

0 0 3 9 1 −1

0 −2 1 5 1 −3

0 1 0 −1 0 2

0 0 −1 −3 1 3


R3+2·R1−−−−−→
R4−1·R1


0 1 2

3 1 0 4
3

0 0 3 9 1 −1

0 0 7
3 7 1 −1

3

0 0 −2
3 −2 0 2

3

0 0 −1 −3 1 3


Then we set k = 1. Here B1 is not the zero matrix and its leftmost nonzero
column is the third column. The first element of the third column in B1 is
nonzero, thus we divide the second row by a23 = 3.

0 1 2
3 1 0 4

3

0 0 3 9 1 −1

0 0 7
3 7 1 −1

3

0 0 −2
3 −2 0 2

3

0 0 −1 −3 1 3


1
3
·R2
−−−→


0 1 2

3 1 0 4
3

0 0 1 3 1
3

−1
3

0 0 7
3 7 1 −1

3

0 0 −2
3 −2 0 2

3

0 0 −1 −3 1 3


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Then we add −a13 = −2
3 -times the second row to the first row, −a33 = −7

3 -
times the second row to the third row, −a43 = 2

3 -times the second row to the
fourth row, and −a53 = 1-times the second row to the fifth row (the later
means only that we add the second row to the fifth row).

0 1 2
3 1 0 4

3

0 0 1 3 1
3

−1
3

0 0 7
3 7 1 −1

3

0 0 −2
3 −2 0 2

3

0 0 −1 −3 1 3


R1− 2

3
·R2

R3− 7
3
·R2

−−−−−−→
R4+ 2

3
·R2

R5+R2


0 1 0 −1 −2

9
14
9

0 0 1 3 1
3

−1
3

0 0 0 0 2
9

4
9

0 0 0 0 2
9

4
9

0 0 0 0 4
3

8
3


Now set k = 2. Here B2 is not the zero matrix and its leftmost nonzero
column is the fifth column. The first element of the fifth column in B2 is
nonzero, thus we divide the third row by a35 = 2

9 .
0 1 0 −1 −2

9
14
9

0 0 1 3 1
3

−1
3

0 0 0 0 2
9

4
9

0 0 0 0 2
9

4
9

0 0 0 0 4
3

8
3


9
2
·R3
−−−→


0 1 0 −1 −2

9
14
9

0 0 1 3 1
3

−1
3

0 0 0 0 1 2

0 0 0 0 2
9

4
9

0 0 0 0 4
3

8
3


Then we add −a15 = 2

9 -times the third row to the first row, −a25 = −1
3 -times

the third row to the second row, −a45 = −2
9 -times the third row to the fourth

row, and −a55 = −4
3 -times the third row to the fifth row.

0 1 0 −1 −2
9

14
9

0 0 1 3 1
3 −1

3

0 0 0 0 1 2

0 0 0 0 2
9

4
9

0 0 0 0 4
3

8
3


R1+ 2

9
·R3

R2− 1
3
·R3

−−−−−−→
R4− 2

9
·R3

R5− 4
3
·R3


0 1 0 −1 0 2

0 0 1 3 0 −1

0 0 0 0 1 2

0 0 0 0 0 0

0 0 0 0 0 0


Finally set k = 3. Now B3 is the zero matrix, thus the procedure terminates
and we claim that the resulting matrix is in reduced row echelon form, and
it clearly is.
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2.2 Systems of linear equations

A linear equation for the unknowns (or variables) x1, x2, x3, . . . xn is an equa-
tion of the form where a linear combination of x1, x2, . . . xn equals to a con-
stant. If the coefficients in the linear combination are a1, a2, . . . , an, and the
constant is b, then the linear equation is

a1x1 + a2x2 + a3x3 + . . .+ anxn = b

Sometimes the same unknowns must satisfy not just one, but several linear
equations. Then we talk about a system of linear equations. As the combining
coefficients in different equations vary, it’s better to use double indexing form
these coefficients. For example the coefficient of the unknown xj is the i-th
equation can be denoted by aij . The constants may be different in different
equations, hence these should be also indexed. Let bi denote the constant on
the right in the i-th equation. Then a system of m equations for the unknowns
x1, x2, x3, . . . xn is of the following form.

a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2

...
...

am1x1 + am2x2 + . . .+ amnxn = bm


The coefficients in the above system naturally define a matrix of size m× n,

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


which is called the coefficient matrix of the system. The coefficient matrix
together with the multiplication of matrices gives a good opportunity to make
a short notation of systems of linear equalities. If x denotes the column vector
(i.e. single column matrix) containing the unknowns and b denotes the column
vector (i.e. single column matrix) containing the the constants on the right,
then the system can be written as

A · x = b
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which is called the matrix form of the system. Clearly the product on the left
has m rows and only one column (as x has only one column). The column
vector b has the same size as A · x, and the two column vectors equal to
each other if all corresponding components equal to each other, which means
exactly that the unknowns must satisfy the system of linear equalities above.
We note here that the elements of the n-dimensional coordinate space Rn

as vectors are usually denoted by underlined lowercase letters in order to
emphasize that they are vectors and not to confuse them with real numbers,
which are that scalars. Thus the notation x and b of column vectors.

Definition 8 If A ∈Mm×n (R) and b is column vector of m elements, then
the extended coefficient matrix of the system of linear equalities A ·x = b
is the matrix of size m× (n+ 1) whose first n columns are exactly the same
as the columns of A and the last column equals to the column vector b. The
extended coefficient matrix is denoted by (A|b)

The last column of the extended coefficient matrix is often separated by a
vertical line because of it’s special role. Now let’s see the following example
of a system of linear equations.

3x1 − 2x2 + 4x3 − x4 = 8
x1 + x2 − 5x4 = −1

2x1 + 3x3 + x4 = 0
−x1 − x2 + 2x3 − 3x4 = 1

x2 − x3 − 2x4 = 6


The coefficient matrix and the column vector of right-hand-side constants are

A =


3 −2 4 −1
1 1 0 −5
2 0 3 1
−1 −1 2 −3
0 1 −1 −2

 b =


8
−1
0
1
6


and the extended coefficient matrix is

3 −2 4 −1 8
1 1 0 −5 −1
2 0 3 1 0
−1 −1 2 −3 1
0 1 −1 −2 6


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Note that whenever the coefficient of an unknown seems to be missing in
the system (see for example x1 and x2 in the second equation) then it only
means that the coefficient is 1. It’s also possible that some of the unknowns
are missing is some equations (see for example x3 in the second equation or
x2 is the third equation). Then the corresponding coefficient is zero.

Definition 9 Let A ∈Mm×n (R) and let b be a column vector of m elements.
The system of linear equations A · x = b is called underdetermined if the
number of equations is less than the number of unknowns (i.e. m < n), and
called overdetermined if the number of equations is larger than the number
of unknowns (i.e. n < m). We say that the system is solvable if it has at least
one solution, and otherwise we say it’s unsolvable. Furthermore a solvable
system A · x = b is called determined if it has exactly one solution, and
called undetermined if it has more than one solution.

Please note the difference between the properties underdetermined and un-
determined. An underdeterminded system can be unsolvable, while a system
is undetermined if it’s solvable and has several solutions. However a solv-
able underdetermined system is undetermined. An overdetermined system
can be solvable or unsolvable, and can be determined or undetermined when
solvable.

An interesting property of systems of linear equations is that if a system
has at least two solutions, then it has infinitely many solutions. To see this
let A ∈ Mm×n (R) be an aritrary matrix and let b be an arbitrary column
vector of m elements. Assume that two different column vectors u and v of m
elements are solutions of the system A · x = b. This means that A · u = b and
A · v = b. Now choose and arbitrary scalar t ∈ R and construct the column
vector (1− t)u+ tv. Then

A ·
(
(1− t)u+ tv

)
= (1− t)A · u+ t A · v =

(1− t) b+ t b = (1− t+ t) b = 1 · b = b

This means A ·
(
(1 − t)u + tv

)
= b and it implies that (1 − t)u + tv is also

a solution of the system A · x = b. This show the system has infinitely many
solutions because u and v are different and we can choose infinitely many
different scalars t ∈ R.

29



Theorem 5 Let A ·x = b be a system of linear equations. If the we apply any
of the elementary row operations to the extended coefficient matrix (A|b), then
the set of solutions of system defined by the new extended coefficient matrix
is exactly the same as the set of solutions of A · x = b.

The consequence of the above theorem is that if the extended coefficient
matrix of the system A · x = b is transformed into reduced row echelon form
with the help of elementary row operations, then the set of solutions remains
the same as for the original system. Since any matrix can be transformed
into reduced row echelon form with the help of elementary row operations, it’s
enough to investigate the set of solutions of systems with extended coefficient
matrix in reduced row echelon form.

Theorem 6 Let A · x = b be a system of linear equations and assume that
the extended coefficient matrix (A|b) is in reduced row echelon form.

1. If (A|b) has a row which contains at least one nonzero element, and
the pivot element in that row is in the last column, then the system is
unsolvable. Otherwise the system is solvable.

2. If A·x = b is solvable and the number of nonzero rows in (A|b) equals to
the number of unknowns, then the system is determined. The only solu-
tion is b̂, which consists of those elements of b, which are not included
in any zero row of (A|b).

3. If A · x = b is solvable and the number of nonzero rows in (A|b) is less
than the number of unknowns, then the system is undetermined.

Note that if a matrix is in reduced row echelon form, then the number of
nonzero rows can’t be larger than the number of columns, since each nonzero
row contains a pivot element, but in reduced row echelon form each column
may contain at most one pivot element. By the above theorem we know what
is the set of solutions if the system is unsolvable, or solvable and the number
of nonzero rows in (A|b) equals to the number of unknowns (in the former
case it’s the empty set). We also know that if a system is undetermined,
then it has infinitely many solutions. Yet, we would like to give a method to
characterize all the solutions in such a situation.

Let A · x = b be a system of linear equations whose extended coefficient
matrix (A|b) is in reduced row echelon form. Assume that the system is
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solvable and the number of nonzero rows in (A|b) is less than the number
of unknowns. Then at least one column of the coefficient matrix A contains
no pivot element. Let x̂ denote the column vector of those unknowns, whose
corresponding columns don’t contain a pivot element. The ordering of the
elements in x̂ is the same as in x. The unknowns in the column vector x̂ are
called the free variables (since soon we will see that their values can be
chosen freely). Let B be a matrix which consists of the nonzero rows of the
coefficient matrix A and the opposites of those columns of A which contain
no pivot element. The opposite of a column means that each element of that
column is multiplied by −1. The ordering of the columns in B is the same as
in A. The matrix B is called the coefficient matrix of the free variables.

Theorem 7 Let A ·x = b be a system of linear equations whose extended co-
efficient matrix (A|b) is in reduced row echelon form. Assume that the system
is solvable and the number of nonzero rows in (A|b) is less than the number
of unknowns. Then the system is undetermined and

v = B · u+ b̂

is a solution of the system, where B is the coefficient matrix of the free vari-
ables, b̂ is the same as in the previous theorem, and u is a column vector of
arbitrary real numbers with appropriate size. Moreover for all solution v of
the system A · x = b there exists a column vector u such that v = B · u+ b̂.

In the above theorem the column vector u determines the values of the free
variables. The appropriate size means that the number of elements in u is
the same as the number of columns in the matrix B. Then the product B · u
is well defined and its dimension is the same as the dimension of b̂, thus the
sum B · u+ b̂ is also well defined.

Now we are able to determine the set of solutions of any system of linear
equations by transforming its extended coefficient matrix into reduced row
echelon form with the help of elementary row operations, and then applying
one of the above theorems.

Example 1.
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x1 − 3x2 + 2x3 + x4 = 4
5x3 − 2x4 = 12

−x1 + 2x2 + x3 − 4x4 = 5
−2x2 + 4x3 + 3x4 = 5
x1 − x2 − 11x4 = 12


This is an overdetermined system. The extended coefficient matrix of the
above system is

(A|b) =


1 −3 2 1 4
0 0 5 −2 12
−1 2 1 −4 5
0 −2 4 3 5
1 −1 0 −11 12


Transform this into reduced row echelon form.

1 −3 2 1 4
0 0 5 −2 12
−1 2 1 −4 5
0 −2 4 3 5
1 −1 0 −11 12

 R3+1·R1−−−−−→
R5−1·R1


1 −3 2 1 4
0 0 5 −2 12
0 −1 3 −3 9
0 −2 4 3 5
0 2 −2 −12 8

 R2↔R3−−−−−→


1 −3 2 1 4
0 −1 3 −3 9
0 0 5 −2 12
0 −2 4 3 5
0 2 −2 −12 8

 (−1)·R2−−−−−→


1 −3 2 1 4
0 1 −3 3 −9
0 0 5 −2 12
0 −2 4 3 5
0 2 −2 −12 8


R1+3·R2
R4+2·R2−−−−−→
R5−2·R2


1 0 −7 10 −23
0 1 −3 3 −9
0 0 5 −2 12
0 0 −2 9 −13
0 0 4 −18 26


1
5
·R3
−−−→


1 0 −7 10 −23
0 1 −3 3 −9

0 0 1 −2
5

12
5

0 0 −2 9 −13
0 0 4 −18 26


R1+7·R3
R2+3·R3−−−−−→
R4+2·R3
R5−4·R3


1 0 0 36

5 −31
5

0 1 0 9
5 −9

5

0 0 1 −2
5

12
5

0 0 0 41
5 −41

5

0 0 0 −82
5

82
5


5
41
·R4

−−−−→


1 0 0 36

5 −31
5

0 1 0 9
5 −9

5

0 0 1 −2
5

12
5

0 0 0 1 −1

0 0 0 −82
5

82
5


R1− 36

5
·R4

R2− 9
5
·R4

−−−−−−→
R3+ 2

5
·R4

R5+ 82
5
·R4
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
1 0 0 0 1
0 1 0 0 0
0 0 1 0 2
0 0 0 1 −1
0 0 0 0 0


Now this is in reduced row echelon form. There’s no row whose pivot element
is in the last column, thus the system is solvable. The number of nonzero
rows is 4 just as the number of unknowns, thus the system is determined and
the only solution is 

x1
x2
x3
x4

 =


1
0
2
−1


Clearly the first row of the above matrix in reduced row echelon form gives
the equation 1 · x1 + 0 · x2 + 0 · x3 + 0 · x4 = 1, that is x1 = 1. The second
row gives the equation 0 · x1 + 1 · x2 + 0 · x3 + 0 · x4 = 0, that is x2 = 0. The
third and fourth rows are similar.

Example 2.

x1 − 2x2 + 4x3 = 10
x1 − x2 + 3x3 + 3x4 = 10

2x2 − x3 − 3x4 = −7
3x1 − 2x2 + 9x3 + 3x4 = 14


This system is neither underdetermined nor overdetermined. The extended
coefficient matrix of the above system is

(A|b) =


1 −2 4 0 10
1 −1 3 3 10
0 2 −1 −3 −7
3 −2 9 3 14


Transform this into reduced row echelon form.

1 −2 4 0 10
1 −1 3 3 10
0 2 −1 −3 −7
3 −2 9 3 14

 R4−3·R1−−−−−→
R2−1·R1


1 −2 4 0 10
0 1 −1 3 0
0 2 −1 −3 −7
0 4 −3 3 −16

 R1+2·R2
R3−2·R2−−−−−→
R4−4·R2
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
1 0 2 6 10
0 1 −1 3 0
0 0 1 −9 −7
0 0 1 −9 −16

 R1−2·R3
R2+1·R3−−−−−→
R4−1·R3


1 0 0 24 24
0 1 0 −6 −7
0 0 1 −9 −7
0 0 0 0 −9

 − 1
9
·R4

−−−−→


1 0 0 24 24
0 1 0 −6 −7
0 0 1 −9 −7
0 0 0 0 1

 R1−24·R4
R2+7·R4−−−−−−→
R3−7·R4


1 0 0 24 0
0 1 0 −6 0
0 0 1 −9 0
0 0 0 0 1


Now this is in reduced row echelon form. The pivot element in the last row
is in the last column, thus the system is unsolvable. Clearly the last row of
the above matrix in reduced row echelon form gives the equation 0 · x1 + 0 ·
x2 + 0 · x3 + 0 · x4 = 1, that is 0 = 1, which is impossible.

Example 3.

x1 + 2x3 + 3x4 = 0
−x1 + 2x2 + x3 − x4 = 3

2x2 + 3x3 + 2x4 = 3
3x1 − 2x2 + 3x3 + 7x4 = −3
−2x1 + 6x2 + 5x3 = 9


This is an overdetermined system. The extended coefficient matrix of the
above system is

(A|b) =


1 0 2 3 0
−1 2 1 −1 3
0 2 3 2 3
3 −2 3 7 −3
−2 6 5 0 9


Transform this into reduced row echelon form.

1 0 2 3 0
−1 2 1 −1 3
0 2 3 2 3
3 −2 3 7 −3
−2 6 5 0 9


R2+1·R1
R4−3·R1−−−−−→
R5+2·R1


1 0 2 3 0
0 2 3 2 3
0 2 3 2 3
0 −2 −3 −2 −3
0 6 9 6 9


1
2
·R2
−−−→
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
1 0 2 3 0

0 1 3
2 1 3

2

0 2 3 2 3
0 −2 −3 −2 −3
0 6 9 6 9


R3−2·R1
R4+2·R1−−−−−→
R5−6·R2


1 0 2 3 0

0 1 3
2 1 3

2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


Now this is in reduced row echelon form. There’s no row whose pivot element
is in the last column, thus the system is solvable. The number of nonzero rows
is 2, but the number of unknowns is 4, thus the system is undetermined. The
free variables are x3 and x4 as the third and fourth columns of the coefficient
matrix don’t contain any pivot element. This means all unknowns can be
given as a linear combination of the free variables plus and additive constant.
Clearly the first row gives the equation 1 · x1 + 0 · x2 + 2 · x3 + 3 · x4 = 0 and
the second row gives the equation 0 · x1 + 1 · x2 + 3

2 · x3 + 1 · x4 = 3
2 . The

third, fourth and fifth rows give only the identity 0 = 0. Thus we have

x1 + 2x3 + 3x4 = 0
x2 + 3

2x3 + x4 = 3
2

}
which can be rearranged as

x1 = −2x3 − 3x4
x2 = −3

2x3 − x4 + 3
2

}
In matrix form this is(

x1
x2

)
=

(
−2 −3
−3

2 −1

) (
x3
x4

)
+

(
0
3
2

)
Here

B =

(
−2 −3
−3

2 −1

)
is the coefficient matrix of the free variables and

b̂ =

(
0
3
2

)
is just as it’s defined in Theorem 6. Now we can choose arbitrary real values
for x3 and x4 and then computing x1 = −2x3− 3x4 and x2 = −3

2x3− x4 + 3
2

we get a solution of the system. For example x3 = 0 and x4 = 0 gives x1 = 0
and x2 = 3

2 , thus it’s a solution of the system. Another solution is x3 = 1,
x4 = 1 which gives x1 = −5, x2 = −1.
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2.3 Systems of linear inequalities

A linear inequality for the unknowns (or variables) x1, x2, x3, . . . xn is in-
equaltilty, where a linear combination of x1, x2, . . . xn is less than or larger
than a constant. If the coefficients in the linear combination are a1, a2, . . . , an,
and the constant is b, then the linear inequality is

a1x1 + a2x2 + a3x3 + . . .+ anxn ≤ b

or
a1x1 + a2x2 + a3x3 + . . .+ anxn ≥ b

For the sake of simplicity we deal only with inequalities where equality is
allowed (i.e. less than or equal, larger or equal). Note that a greater-or-equal-
type inequality can be transformed to a less-than-or-equal-type inequality
by multiplying it with (−1). Thus it’s enough to deal with linear inequalities
where a linear combination of the unknowns is less than or equal to a constant.
A system of m linear inequalities for the unknowns x1, x2, x3, . . . xn is of the
following form.

a11x1 + a12x2 + . . .+ a1nxn≤ b1
a21x1 + a22x2 + . . .+ a2nxn≤ b2

...
...

am1x1 + am2x2 + . . .+ amnxn≤ bm


The coefficients in the above system naturally define a matrix of size m× n,

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn


which is called the coefficient matrix of the system. If x denotes the column
vector containing the unknowns and b denotes the column vector containing
the the right-hand-side constants, then the matrix form of the system of
inequalities is

A · x ≤ b

where the column vector A · x is less than or equal to the column vector
b if each entry of A · x is less than or equal to the corresponding entry of
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b. Solving systems of linear inequalities can be quite challenging. Even the
decision problem whether a given system has a solution or not is just com-
plicated as a linear programming problem. The linear programming problem
is to minimize (or maximize) a given linear combination of the unknowns
under linear equality and inequality constraints. There are computationally
efficient algorithms to solve linear programming problems, such as simplex
method or interior point method, but the presentation of these algorithms is
way beyond the scope of this text. Instead, we would like to introduce two
methods which are much more simple to describe and can be used to solve
small systems linear inequalities. These are the graphical solution method
and Fourier-Motzkin elimination. Although the simplex method and interior
point method are efficient for large system of inequalities, they are designed
to find only one optimal solution and they’re unable to find all the solutions of
the system. An advantage of graphical solution method and Fourier-Motzkin
elimination is that it’s possible to give all solutions of the system with the
help of them.

2.3.1 Graphical solution method

The graphical solution method can be applied to a system of linear inequal-
ities for two variables. The unknowns in this situation are typically denoted
by x and y instead of x1 and x2. The idea behind this method is that the set
of points in the plane whose Cartesian coordinates (x, y) satisfy the linear
equation a1x+ a2y = b is a line which is perpendicular to the vector (a1, a2).
The set of points in the plane whose Cartesian coordinates (x, y) satisfy the
linear inequality a1x + a2y ≤ b is a closed half-plane bounded by the line
a1x+ a2y = b. More precisely the linear inequality a1x+ a2y ≤ b determines
the opposite of the half-plane where the vector (a1, a2) points to. Thus the
closed half-plane determined by a1x + a2y ≤ b can be presented in a figure
by drawing the line a1x + a2y = b and a vector (more precisely a directed
line segment) with the same direction as (−a1,−a2) and initial point on the
line a1x+ a2y = b.

The pair of real numbers (x, y) is a solution of the system of linear inequal-
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ities

a11x+ a12y≤ b1
a21x+ a22y≤ b2

...
...

am1x+ am2y≤ bm


if and only if the point in the plane with Cartesian coordinates is in the
intersection of all half-planes determined by the inequalities in the system.
Thus it’s enough to present all the half-planes determined by the inequalities
in the system and look for their intersection.

Example 1.

x+ 2y≤ 10
x− 5y≤ −4
−3x+ y≤ −2
x+ y≤ 11

−3x− y≤ 0


The line x+ 2y = 10 can be drawn easily if we find two points of it. A point
of the line can be found by substituting an arbitrary value to x or y and then
solve the equation for the other variable. Let’s choose now x = 0. Then y
must satisfy 0 + 2y = 10, which gives y = 5. This means (0, 5) is a point of
the line x + 2y = 10. If we choose y = 0, then x must satisfy x + 2 · 0 = 10,
which gives x = 10. This means (10, 0) is a point of the line x+2y = 10. Thus
x+2y = 10 is the line which passes through the points (0, 5) and (10, 0). The
closed half-plane determined by x + 2y ≤ 10 can be presented by drawing
(besides the corresponding line) a vector with the same direction as (−1,−2)
and initial point on the line x + 2y = 10. The rest of the half-planes are
presented in a similar way.
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We can see that the system is solvable and the set of solutions is a triangle
(shaded area in the figure). We also found that the inequalities x + y ≤ 11
and −3x−y ≤ 0 are redundant, which means that the set of solutions doesn’t
change if we omit these inequalities from the system. The triangle is bounded
from below by the line x − 5y = −4 and bounded from above by the lines
−3x+y = −2 and x+2y = 10. We can rearrange the inequality corresponding
to the lower bounding line as 1

5x+ 4
5 ≤ y and we can rearrange the inequalities

corresponding to the upper bounding lines as y ≤ 3x − 2 and y ≤ −1
2x + 5.

Furthermore we can see that the first component of any point in the triangle is
between 1 and 6. Thus the set of solutions can be algebraically characterized
as the set of points in the plane whose Cartesian coordinates (x, y) satisfy

1≤ x ≤ 6
1
5x+ 4

5 ≤ y ≤min
{

3x− 2,−1
2x+ 5

} }
We can go even further and say 3x − 2 ≤ −1

2x + 5 is satisfied if and only
if x ≤ 2, hence the set of solutions is the set of points in the plane whose
Cartesian coordinates (x, y) satisfy

1≤ x ≤ 2
1
5x+ 4

5 ≤ y ≤ 3x− 2

}
or

2≤ x ≤ 6
1
5x+ 4

5 ≤ y ≤−
1
2x+ 5

}
Geometrically this mean we cut the triangle into two pieces with the help of
the vertical line x = 2 and say a point presents a solution if it’s an element
of the left-hand-part or an element of the right-hand-part.
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Example 2.

x− 5y≤ 6
−3x+ y≤ −4
−3x− y≤ −2
−4x+ 5y≤ 10


The half-planes determined by the inequalities in the system are presented
in a similar way as in Example 1. above.

We can see that the system is solvable, but this time the set of solutions
is an unbounded area in the plane (shaded in the figure). We find that the
inequality −3x− y ≤ −2 is redundant. The set of solutions is bounded from
below by the line x−5y = 6 and bounded from above by the lines −3x+y =
−4 and −4x + 5y = 10. We can rearrange the inequality corresponding to
the lower bounding line as 1

5x−
6
5 ≤ y and we can rearrange the inequalities

corresponding to the upper bounding lines as y ≤ 3x − 4 and y ≤ 4
5x + 2.

The first component of any point in the set of solutions is larger than 1. Thus
the set of solutions can be algebraically described as the set of points in the
plane whose Cartesian coordinates (x, y) satisfy

1≤ x <+∞
1
5x−

6
5 ≤ y ≤min

{
3x− 4, 45x+ 2

} }
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Here 3x − 4 ≤ 4
5x + 2 is satisfied if and only if x ≤ 30

11 , hence the set of
solutions is the set of points in the plane whose Cartesian coordinates (x, y)
satisfy

1≤ x ≤ 30
11

1
5x−

6
5 ≤ y ≤ 3x− 4

}
or

30
11 ≤ x <+∞

1
5x−

6
5 ≤ y ≤

4
5x+ 2

}

Example 3.

x+ y≤ 4
2x− 3y≤ −7
5x+ 2y≤ 17
−3x+ y≤ 0


The half-planes determined by the inequalities in the system are presented
in a similar way as in Example 1.

We can see that the system is solvable, but this time the set of solutions
contains only the single point (1, 3). We find that the inequality 5x+2y ≤ 17
is redundant. To prove algebraically that there’s no solution besides the point
(1, 3), let’s express y from all the relevant (i.e. non-redundant) inequalities.
Then we have

y ≤−x+ 4
2
3x+ 7

3 ≤ y
y ≤ 3x


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This shows that
2

3
x+

7

3
≤ y ≤ min {−x+ 4, 3x}

but this can satisfied only if the following two inequalities hold.

2
3x+ 7

3 ≤ −x+ 4
2
3x+ 7

3 ≤ 3x

}
These can be rearranged as

5
3x≤

5
3

−7
3x≤ −

7
3

}
and then

x≤ 1
x≥ 1

}
The only solution of the above system is x = 1. Substituting this back into
the last system which contained y gives

y ≤ 3
3≤ y

y ≤ 3


which shows that y = 3. Thus the only solution is clearly (x, y) = (1, 3).

Example 4.

3x− 4y≤ −8
−x− 3y≤ −6
5x+ 3y≤ 12
−2x+ 7y≤ 4


The half-planes determined by the inequalities in the system are presented
in the following figure.
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We can see that the system is has no solution, as no point of the intersection
of the half-planes determined by the first three inequalities is an element of
the half-plane determined by the last inequality. To see this algebraically,
let’s express y from all inequalities. Then we have

3
4x+ 2≤ y
−1

3x+ 2≤ y
y ≤−5

3x+ 4

y ≤ 2
7x+ 4

7


This shows that

max

{
3

4
x+ 2,−1

3
x+ 2

}
≤ y ≤ min

{
−5

3
x+ 4,

2

7
x+

4

7

}
but this can satisfied only if the following four inequalities hold.

3
4x+ 2≤ −5

3x+ 4
3
4x+ 2≤ 2

7x+ 4
7

−1
3x+ 2≤ −5

3x+ 4

−1
3x+ 2≤ 2

7x+ 4
7


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These can be rearranged as

29
12x≤ 2
13
28x≤ −

10
7

4
3x≤ 2

−13
21x≤ −

10
7


and then

x≤ 24
29

x≤ 40
13

x≤ 3
2

x≥ 30
13


Here 24

29 < 1 and 1 < 30
13 , hence there’s no x ∈ R which could satisfy the above

inequalities.

2.3.2 Fourier-Motzkin elimination

The graphical solution method is a good tool to visualize the set of solu-
tions of a system of linear inequalities. We can also easily find the redundant
inequalities in the system with the help of it. However sometimes we need
to apply an algebraic approach for example when the lines corresponding to
the inequalities intersect each other in points which are very close to each
other. In some cases it’s hard to make a decision upon the graphical image
whether an intersection point of two lines is an element of a third line or not.
Furthermore the graphical solution method can be applied to systems with
only two unknowns. We could develop an extended version for the case of
three unknowns since inequalities can be visualized then as half-spaces of the
three dimensional coordinate space, but the shape of the intersection of such
half-spaces can be very complicated and hard to find a good projection onto
the plane. Besides there’s no hope to visualize inequalities when the num-
ber unknowns is larger than 3, since these could be presented only in higher
dimensional spaces.

Now we introduce an algebraical approach to find all the solutions of a sys-
tem of linear inequalities. This method was first developed by French mathe-
matician J.B.J. Fourier in 1826 and later T. S. Motzkin rediscovered it in 1936
to solve linear programming problems, and hence the method is named af-
ter them. The Fourier-Motzkin elimination method eliminates the unknowns
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from the system one-by-one until only one unknown is left. Then it can be
easily told whether the system is solvable or not, and what’s the possible
range of that single unknown when the system is solvable. After that the
possible values of the variables can be substituted back step-by-step to find
all the solutions of the system. Now we first show how to eliminate the last
unknown from any system and then this can be repeated until it’s necessary
and only one unknown is left.

Consider the following system of linear inequalities:

a11x1 + a12x2 + . . .+ a1nxn≤ b1
a21x1 + a22x2 + . . .+ a2nxn≤ b2

...
...

am1x1 + am2x2 + . . .+ amnxn≤ bm


We can collect here first those inequalities where the coefficient of xn is posi-
tive, then collect the those inequalities where the coefficient of xn is negative,
and finally collect those where the coefficient of xn is zero (i.e. xn is miss-
ing). Assume that the above system is already in this form, that is there are
non-negative integers 0 ≤ k ≤ l ≤ m such that

ain > 0 for all i ∈ {1, 2, . . . , k}
ain < 0 for all i ∈ {k + 1, k + 2, . . . , l}
ain = 0 for all i ∈ {l + 1, l + 2, . . . ,m}

In other words the coefficient of xn is positive in the first k inequalities,
negative in the next l−k inequalities, and zero in the rest of the inequalities.

a1 1x1 + a1 2x2 + . . .+ a1nxn≤ b1
a2 1x1 + a2 2x2 + . . .+ a2nxn≤ b2

...
...

ak 1x1 + ak 2x2 + . . .+ ak nxn≤ bk
ak+11x1 + ak+12x2 + . . .+ ak+1nxn≤ bk+1

...
...

al 1x1 + al 2x2 + . . .+ al nxn≤ bl
al+11x1 + al+12x2 + . . .+ al+1nxn≤ bl+1

...
...

am 1x1 + am 2x2 + . . .+ amnxn≤ bm


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This can be rearranged then as

xn ≤ b1
a1n
− a1 1

a1n
x1 − a1 2

a1n
x2 − . . .− a1n−1

a1n
xn−1

xn ≤ b2
a2n
− a2 1

a2n
x1 − a2 2

a2n
x2 − . . .− a2n−1

a2n
xn−1

...
...

xn ≤ bk
ak n
− ak 1

ak n
x1 − ak 2

ak n
x2 − . . .− ak n−1

ak n
xn−1

bk+1

ak+1n
− ak+1 1

ak+1n
x1 − ak+1 2

ak+1n
x2 − . . .− ak+1n−1

ak+1n
xn−1 ≤ xn

...
...

bl
al n
− al 1

al n
x1 − al 2

al n
x2 − . . .− al n−1

al n
xn−1 ≤ xn

al+11x1 + al+12x2 + . . .+ al+1n−1xn−1 ≤ bl+1

...
...

am 1x1 + am 2x2 + . . .+ amn−1xn−1 ≤ bm


Let’s see the following cases.

1. If all coefficients of xn are zero (i.e. k = l = 0 and xn is missing from
each inequality), then xn may take any value independently of the values
of the other unknowns, however the system can be still unsolvable.

2. If the coefficients of xn are positive in all inequalities of the system (i.e.
k = l = m), then we have only upper bounds for xn. In this situation
we can choose arbitrary values for x1, x2, . . . , xn−1 and then xn must
be not larger than the minimum of the upper bounds, which can be
computed after substituting the values of x1, x2, . . . , xn−1.

3. If the coefficients of xn are negative in all inequalities of the system
(i.e. k = 0 and l = m), then we have only lower bounds for xn. In this
situation we can choose arbitrary values for x1, x2, . . . , xn−1 and then
xn must be not less than the maximum of the lower bounds, which can
be computed after substituting the values of x1, x2, . . . , xn−1.

4. If the coefficients of xn are positive or zero (but not negative) in all
inequalities of the system (i.e. k = l < m), then we have to find the set
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of solutions of the system

al 1x1 + al 2x2 + . . .+ al n−1xn−1≤ bl
al+11x1 + al+12x2 + . . .+ al+1n−1xn−1≤ bl+1

...
...

am 1x1 + am 2x2 + . . .+ amn−1xn−1≤ bm


If there’s a solution, then xn must be not larger than the minimum of
the upper bounds, which can computed with the help of the solutions
of the above system.

5. If the coefficients of xn are negative or zero (but not positive) in all
inequalities of the system (i.e. k = 0 and 0 < l < m), then we have to
find the set of solutions of the system

al 1x1 + al 2x2 + . . .+ al n−1xn−1≤ bl
al+11x1 + al+12x2 + . . .+ al+1n−1xn−1≤ bl+1

...
...

am 1x1 + am 2x2 + . . .+ amn−1xn−1≤ bm


If there’s a solution, then xn must be not less than the maximum of
the lower bounds, which can computed with the help of the solutions
of the above system.

6. If there are both positive and negative coefficients of xn in the system
(i.e. 0 < k < l ≤ m), then we have both upper and lower bounds
for xn. Thus xn must be not larger than the minimum of the upper
bounds and not less than the maximum of the lower bounds. We can
choose a value for xn if and only if the maximum of the lower bounds is
less then or equal to the minimum of the upper bounds. This property
holds exactly when every lower bound for xn is not larger than any of
the upper bounds. This yields to a system of inequalities together with
those where the coefficient of xn is zero if there’s any. This new system
contains only the unknowns x1, x2, . . . , xn−1. A solution of that system
can be substituted back to get the lower and upper bound for xn.

Now we discuss what to do when only one unknown is left. Assume we
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have system
a1 1x1≤ b1
a2 1x1≤ b2

...
...

ak 1x1≤ bk
ak+11x1≤ bk+1

...
...

al 1x1≤ bk
al+11x1≤ bl+1

...
...

am 1x1≤ bm


where

ai1 > 0 if i ∈ {1, 2, . . . , k}
ai1 < 0 if i ∈ {k + 1, k + 2, . . . , l}
ai1 = 0 if i ∈ {l + 1, l + 2, . . . ,m}

The later means we possibly have inequalities of the form 0 ≤ bi. Such in-
equalities can be produced during the preceding steps. If there’s at least one
i ∈ {l + 1, l + 2, . . . ,m} such that bi < 0, then the system has no solution.
Otherwise those inequalities are irrelevant and it’s enough to treat the first l
inequalities.

1. If the coefficients of x1 are positive in all inequalities of the system,
then we have only upper bounds for xn. In this situation the system
is solvable and the only restriction for x1 is that it must be not larger
than the minimum of the upper bounds.

2. If the coefficients of x1 are negative in all inequalities of the system,
then we have only lower bounds for x1. In this situation the system is
solvable and the only restriction for x1 is that it must be not less than
the maximum of the lower bounds.

3. If there are both positive and negative coefficients of x1 in the system,
then we have both upper and lower bounds for x1. Thus x1 must be
not larger than the minimum of the upper bounds and not less than
the maximum of the lower bounds. We can choose a value for x1 if and
only if the maximum of the lower bounds is less then or equal to the
minimum of the upper bounds. Otherwise the system is unsolvable.
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Now can solve any system of linear inequalities with the help of the above
procedure. The drawback of the Fourier-Motzkin elimination method is that
the number of inequalities can exponentially grow during the procedure, thus
we can use it for systems with relatively few inequalities.

Example 1.

3x1 − x2 + 2x3≤ −2
x1 − 3x2 + x3≤ 6
4x1 + x2 − x3≤ −1

−x1 + 2x2 − 3x3≤ 0


Here the coefficients of x3 are positive in the first and second inequalities,
and negative in the third and fourth inequalities. Now we rearrange them to
get lower and upper bounds for x3.

x3≤ −3
2x1 + 1

2x2 − 1

x3≤ −x1 + 3x2 + 6

4x1 + x2 + 1 ≤x3
−1

3x1 + 2
3x2 ≤x3


Thus

max

{
4x1 + x2 + 1,−1

3
x1 +

2

3
x2

}
≤ x3 ≤ min

{
−3

2
x1 +

1

2
x2 − 1,−x1 + 3x2 + 6

}
The system may have a solution only if each lower bound for x3 is not larger
than any of the upper bounds. Hence we need to find the set of solutions of
the system

4x1 + x2 + 1≤ −3
2x1 + 1

2x2 − 1

4x1 + x2 + 1≤ −x1 + 3x2 + 6

−1
3x1 + 2

3x2≤ −
3
2x1 + 1

2x2 − 1

−1
3x1 + 2

3x2≤ −x1 + 3x2 + 6


Let’s transform it into standard form.

11
2 x1 + 1

2x2≤ −2

5x1 − 2x2≤ 5
7
6x1 + 1

6x2≤ −1
2
3x1 −

7
3x2≤ 6


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Collect the those inequalities first where the coefficient of x2 is positive.

11
2 x1 + 1

2x2≤ −2
7
6x1 + 1

6x2≤ −1

5x1 − 2x2≤ 5
2
3x1 −

7
3x2≤ 6


Here the coefficients of x2 are positive in the first and second inequalities, and
negative in the third and fourth inequalities. Rearrange them to get lower and
upper bounds for x2.

x2≤ −11x1 − 4

x2≤ −7x1 − 6
5
2x1 −

5
2 ≤x2

2
7x1 −

18
7 ≤x2


Thus

max

{
5

2
x1 −

5

2
,
2

7
x1 −

18

7

}
≤ x2 ≤ min {−11x1 − 4,−7x1 − 6}

The system may have a solution only if each lower bound for x2 is not larger
than any of the upper bounds. Hence we need to find the set of solutions of
the system

5
2x1 −

5
2 ≤ −11x1 − 4

5
2x1 −

5
2 ≤ −7x1 − 6

2
7x1 −

18
7 ≤ −11x1 − 4

2
7x1 −

18
7 ≤ −7x1 − 6


Let’s transform it into standard form.

27
2 x1≤ −

3
2

19
2 x1≤ −

7
2

79
7 x1≤ −

10
7

51
7 x1≤ −

24
7


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Here all coefficients of x1 are positive, hence we have only upper bound for
x1, but no lower bound. The upper bounds are

x1≤ −1
9

x1≤ − 7
19

x1≤ −10
79

x1≤ − 8
17


Thus

x1 ≤ min

{
−1

9
,− 7

19
,−10

79
,− 8

17

}
= − 8

17

Finally we see that the solutions of the system are those triples (x1, x2, x3)
which satisfy

−∞ <x1≤ − 8
17

max
{

5
2x1 −

5
2 ,

2
7x1 −

18
7

}
≤x2≤ min {−11x1 − 4,−7x1 − 6}

max
{

4x1 + x2 + 1,− 1
3x1 + 2

3x2
}
≤x3≤ min

{
− 3

2x1 + 1
2x2 − 1,−x1 + 3x2 + 6

}


To give one solution let’s choose x1 = −1 first. Then

max

{
−5,−20

7

}
≤ x2 ≤ min {7, 1} ,

that is

−20

7
≤ x2 ≤ 1

Let’s choose x2 = −1. Then

max

{
−4,−1

3

}
≤ x3 ≤ min {0, 4} ,

that is

−1

3
≤ x1 ≤ 0

Finally choose x3 = 0. This shows that (−1,−1, 0) is a solution of the system.

Example 2.
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x1 + 2x2 − 3x3 + 4x4≤ −7
x1 + x2 + 2x3 − x4≤ 8
x1 + x2 + x3 − 3x4≤ 4
−x1 − 2x2 − x4≤ 1
3x1 + 2x2 + x3≤ 4
−x1 + 2x2≤ 5


Here the coefficient of x4 is positive in the first inequality, they are negative
in the second, third and fourth inequalities, and zero in the fifth and sixth in-
equalities. Rearrange the first four inequalities to get lower and upper bounds
for x4.

x4 ≤ −1
4x1 −

1
2x2 + 3

4x3−
7
4

x1 + x2 + 2x3 − 8 ≤x4
1
3x1 + 1

3x2 + 1
3x3 −

4
3 ≤x4

−x1 − 2x2 ≤x4
3x1 + 2x2 + x3 ≤ 4
−x1 + 2x2 ≤ 5


Thus

max

{
x1 + x2 + 2x3 − 8,

1

3
x1 +

1

3
x2 +

1

3
x3 −

4

3
,−x1 − 2x2 − 1

}
≤ x4

and

x4 ≤ −
1

4
x1 −

1

2
x2 +

3

4
x3 −

7

4

The system may have a solution only if each lower bound for x4 is not larger
than any of the upper bounds. Hence we need to find the set of solutions of
the system

x1 + x2 + 2x3 − 8≤ −1
4x1 −

1
2x2 + 3

4x3 −
7
4

1
3x1 + 1

3x2 + 1
3x3 −

4
3 ≤ −

1
4x1 −

1
2x2 + 3

4x3 −
7
4

−x1 − 2x2 − 1≤ −1
4x1 −

1
2x2 + 3

4x3 −
7
4

3x1 + 2x2 + x3≤ 4
−x1 + 2x2≤ 5


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Let’s transform it into standard form.

5
4x1 + 3

2x2 + 5
4x3≤

25
4

7
12x1 + 5

6x2 −
5
12x3≤ −

5
12

−3
4x1 −

3
2x2 −

3
4x3≤ −

3
4

3x1 + 2x2 + x3≤ 4
−x1 + 2x2≤ 5


Collect the those equations first where the coefficient of x3 is positive.

5
4x1 + 3

2x2 + 5
4x3≤

25
4

3x1 + 2x2 + x3≤ 4
7
12x1 + 5

6x2 −
5
12x3≤ −

5
12

−3
4x1 −

3
2x2 −

3
4x3≤ −

3
4

−x1 + 2x2≤ 5


Here the coefficients of x3 are positive in the first and second inequalities,
negative in the third and fourth inequalities, and zero in the fifth inequality.
Rearrange them to get lower and upper bounds for x3.

x3≤ −x1 − 6
5x2 + 5

x3≤ −3x1 − 2x2 + 4
7
5x1 + 2x2 + 1 ≤x3
−x1 − 2x2 + 1 ≤x3
−x1 + 2x2 ≤ 5


Thus

max

{
7

5
x1 + 2x2 + 1,−x1 − 2x2 + 1

}
≤ x3 ≤ min

{
−x1 −

6

5
x2 + 5,−3x1 − 2x2 + 4

}
The system may have a solution only if each lower bound for x3 is not larger
than any of the upper bounds. Hence we need to find the set of solutions of
the system

7
5x1 + 2x2 + 1≤ −x1 − 6

5x2 + 5
7
5x1 + 2x2 + 1≤ −3x1 − 2x2 + 4

−x1 − 2x2 + 1≤ −x1 − 6
5x2 + 5

−x1 − 2x2 + 1≤ −3x1 − 2x2 + 4
−x1 + 2x2≤ 5


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Let’s transform it into standard form.

12
5 x1 + 16

5 x2≤ 4
22
5 x1 + 4x2≤ 3

−4
5x2≤ 4

2x1≤ 3
−x1 + 2x2≤ 5


Collect the equations upon the coefficients of x2.

12
5 x1 + 16

5 x2≤ 4
22
5 x1 + 4x2≤ 3

−x1 + 2x2≤ 5

−4
5x2≤ 4

2x1≤ 3


Here the coefficients of x2 are positive in the first three inequalities, negative
in the fourth inequality, and zero in the fifth. Rearrange them to get lower
and upper bounds for x2.

x2≤ −3
4x1 + 5

4

x2≤ −11
10x1 + 3

4

x2≤ 1
2x1 + 5

2

−5 ≤x2
2x1 ≤ 3


Thus

−5 ≤ x2 ≤ min

{
−3

4
x1 +

5

4
,−11

10
x1 +

3

4
,
1

2
x1 +

5

2

}
The system may have a solution only if each lower bound for x2 is not larger
than any of the upper bounds. Hence we need to find the set of solutions of
the system

−5≤ −3
4x1 + 5

4

−5≤ −11
10x1 + 3

4

−5≤ 1
2x1 + 5

2

2x1≤ 3


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Let’s transform it into standard form.

3
4x1≤

25
4

11
10x1≤

23
4

−1
2x1≤

15
2

2x1≤ 3


Collect the equations upon the coefficients of x1.

3
4x1≤

25
4

11
10x1≤

23
4

2x1≤ 3

−1
2x1≤

15
2


Rearrange the inequalities to get lower and upper bounds for x1.

x1≤ 25
3

x1≤ 115
22

x1≤ 3
2

−15 ≤x1


Thus

−15 ≤ x2 ≤ min

{
25

3
,
115

22
,
3

2

}
=

3

2

Finally we see that the solutions of the system are those (x1, x2, x3, x4) which
satisfy

−15 ≤x1≤ 3
2

−5 ≤x2≤ min
{
− 3

4x1 + 5
4 ,−

11
10x1 + 3

4 ,
1
2x1 + 5

2

}
max

{
7
5x1 + 2x2 + 1,−x1 − 2x2 + 1

}
≤x3≤ min

{
−x1 − 6

5x2 + 5,−3x1 − 2x2 + 4
}

max
{
x1 + x2 + 2x3 − 8, 13x1 + 1

3x2 + 1
3 x3 −

4
3 ,−x1 − 2x2 − 1

}
≤ x4

x4≤ − 1
4x1 −

1
2x2 + 3

4x3 −
7
4


To give one solution let’s choose x1 = 1 first. Then

−5 ≤ x2 ≤ min

{
1

2
,− 7

20
, 3

}
,

55



that is

−5 ≤ x2 ≤ −
7

20

Let’s choose x2 = −1. Then

max

{
2

5
, 2

}
≤ x3 ≤ min

{
26

5
, 3

}
,

that is
2 ≤ x3 ≤ 3

Let’s choose x3 = 2. Then

max

{
−4,−2

3
, 0

}
≤ x4 ≤ 0,

that is
0 ≤ x4 ≤ 0

Now we don’t have a choice for x4, since it must equal to zero. This shows
that (1,−1, 2, 0) is a solution of the system.
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3 Computed tomography

3.1 Pictures, digitization and phantoms

A picture consists of two components: the picture region and the picture
function. The picture region is a rectangle R whose sides are parallel to the
axises of a Cartesian coordinate system in the plane. Such a rectangle can be
easily given as the direct product of two intervals [a, b] and [c, d].

R =
{

(x, y)
∣∣x ∈ [a, b], y ∈ [c, d]

}
Here [a, b] and [c, d] are just the orthogonal projection of R onto the coordi-
nate axises. The picture function is a function f of two variables, which is
constant zero outside of the picture region. We often refer to the value of the
picture at a point (x, y) as the density at (x, y).

A partition of the interval [a, b] is a sequence of points a0, a1, . . . an ∈ [a, b],
where a = a0 < a1 < . . . an−1 < an = b. A partition naturally divides the the
interval [a, b] into the union of the intervals [ai−1, ai], i ∈ {1, 2, . . . n}. The
uniform partition of [a, b] is when all the intervals [ai−1, ai] have the same
length, that is when

ai = a+ i · b− a
n

, i ∈ {0, 1, . . . n}

Similarly a partition of the interval [c, d] is a sequence of points c0, c1, . . . cm ∈
[a, b], where c = c0 < c1 < . . . cn−1 < cm = d. A partition naturally divides
the the interval [c, d] into the union of the intervals [ci−1, ci], i ∈ {1, 2, . . . n}.
The uniform partition of [c, d] is when

ci = c+ i · d− c
m

, i ∈ {0, 1, . . .m}

These two partitions together give a partition of the picture region R, which
is the set of rectangles obtained by taking the direct product of each pair of

57



the intervals [ai−1, ai] and [cj−1, cj ], i ∈ {0, 1, . . . n} and j ∈ {0, 1, . . .m}. We
call the elements of the partition of the picture region R pixels if they’re
obtained by uniform partitions of [a, b] and [c, d]. We can refer to the pixels
by double indexing in the same manner as in the case of matrices if

Ri,j = [aj−1, aj ]× [cm−i, cm−i+1], i ∈ {1, 2, . . .m}

Then we say Ri,j is the pixel of the picture region in the i-th row and j-th
column.

An m×n digitized picture is one whose value in the interior of any pixel of
a uniform partition of the picture region is constant. The m× n digitization
of a picture is an m×n digitized picture such that the double integral of the
original picture over any pixel equals to the double integral of the digitized
picture over the same pixel. In X-ray transmission computed tomography the
picture region is the reconstruction region and the the density of the picture
at a point (x, y) is the relative linear attenuation number at an effective
energy of the tissue at the point (x, y).

While the aim of X-ray transmission computed tomography is the recon-
struction of real objects from their actual x-ray projections, the theoretical
development of CT was based on experiments on mathematically described
objects from computer simulated projection data. The basic reason for this
that computer simulation enables us to investigate individually various effects
that can’t be separated physically. Such mathematically described objects
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are called phantoms. A test phantom is nothing but a picture on which we
wish to test reconstruction algorithms or data collection methods. A simple
phantom can be defined for example by specifying the constant values of the
picture function over each pixel of a digitized picture. Such phantom can be
specified with the help of a matrix A = (aij) where aij determines the con-
stant value over the pixel Ri,j . Another type of simple phantom is a polygon
inside the picture region and specifying the picture function equal to 1 inside
the polygon and equal to zero outside the polygon.

3.2 Data collection

Let a picture with picture region R = [a, b]× [c, d] and picture function f be
given, which acts as a phantom. A line l can be specified by giving a point and
a direction vector of the line. The parametric equation of the line l passing
through the point P and parallel to the vector v is

l =
{
P + t · v

∣∣ t ∈ R
}

The parametrization of the line is not unique, however the value of the line
integral is independent of the choice of the parametrization. If the parametric
equation of the l is given, then the line integral of the picture function f can
be computed as ∫

l

f =

∞∫
−∞

f(P + t · v) · |v| dt

where |v| denotes the Euclidean length of the vector v. If v = (v1, v2), then
|v| =

√
(v1)2 + (v2)2. Despite the integral is taken over an unbounded in-

terval, the picture function is zero outside of a finite domain (the picture
region), thus it’s enough to take the above integral over a finite interval
which depends on position of the line to the picture region and depends on
the parametrization. ∫

l

f =

∫
l∩R

f

If a uniform partition of the picture region is also given with pixels Ri,j , then
the line integral of f along the line l can be computed as the sum of the line
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integrals along the intersections of l with each pixel.∫
l∩R

f =
m∑
i=1

n∑
j=1

∫
l∩Ri,j

f

The line integral of a constant function over a bounded domain equals to
the value of the function multiplied by the length of intersection of the line
and the domain. Thus if f is simple phantom which takes the constant value
ai,j over the pixel Ri,j of an m× n uniform partition of the picture region R
then ∫

l

f =

m∑
i=1

n∑
j=1

∫
l∩Ri,j

f =

m∑
i=1

n∑
j=1

ai,j · λ1 (l ∩Ri,j)

where λ1 denotes the one-dimensional Lebesgue measure (i.e. length).

Example

Let R = [0, 4]× [0, 3], m = 3, n = 4. Then the uniform partition of [0, 4] is
a0 = 0, a1 = 1, a2 = 2, a3 = 3, a4 = 4 and the uniform partition of [0, 3] is
c0 = 0, c1 = 1, c2 = 2, c3 = 3. These imply the pixels

R1,1 = [0, 1]× [2, 3] R2,1 = [0, 1]× [1, 2] R3,1 = [0, 1]× [0, 1]
R1,2 = [1, 2]× [2, 3] R2,2 = [1, 2]× [1, 2] R3,2 = [1, 2]× [0, 1]
R1,3 = [2, 3]× [2, 3] R2,3 = [2, 3]× [1, 2] R3,3 = [2, 3]× [0, 1]
R1,4 = [3, 4]× [2, 3] R2,4 = [3, 4]× [1, 2] R3,4 = [3, 4]× [0, 1]
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Let f be the simple phantom defined by the matrix

A =


1
4

2
3

1
3

1
2

1
2

1
3

1
2

1
3

1
3

1
2 1 0


and let l be the line passing through the point P =

(
0, 14
)

and parallel to the
vector v = (2, 1). The parametrization of l is

l =
{
P + t · v

∣∣ t ∈ R
}

This means every point of the line l can be written in the form

P + t · v =

(
0,

1

4

)
+ t · (2, 1) =

(
0 + 2t,

1

4
+ t

)
=

(
2t,

1

4
+ t

)
where t ∈ R.

Let P0, P1, P2, P3 denote the intersection points of l with the horizontal lines
y = 0, y = 1, y = 2, y = 3 respectively, and let Q0, Q1, Q2, Q3, Q4 denote the
intersection points of l with the vertical lines x = 0, x = 1, x = 2, x = 3,
x = 4 respectively. Then the corresponding parameters of P0, P1, P2, P3 can
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be computed by making 1
4 +t equal to 0, 1, 2, 3, and then the first components

of P0, P1, P2, P3 are obtained by substituting the parameter to 2t. That is

1
4 + t = 0 ⇒ t = −1

4 ⇒ 2t = −1
2 ⇒ P0 =

(
−1

2 , 0
)

1
4 + t = 1 ⇒ t = 3

4 ⇒ 2t = 3
2 ⇒ P1 =

(
3
2 , 1
)

1
4 + t = 2 ⇒ t = 7

4 ⇒ 2t = 7
2 ⇒ P2 =

(
7
2 , 2
)

1
4 + t = 3 ⇒ t = 11

4 ⇒ 2t = 11
2 ⇒ P3 =

(
11
2 , 3

)
Similarly the corresponding parameters of Q0, Q1, Q2, Q3, Q4 can be com-
puted by making 2t equal to 0, 1, 2, 3, 4, and then the second components of
Q0, Q1, Q2, Q3, Q4 are obtained by substituting the parameter to t+ 1

4 . That
is

2t = 0 ⇒ t = 0 ⇒ t+ 1
4 = 1

4 ⇒ Q0 =
(
0, 14
)

2t = 1 ⇒ t = 1
2 ⇒ t+ 1

4 = 3
4 ⇒ Q1 =

(
1, 34
)

2t = 2 ⇒ t = 1 ⇒ t+ 1
4 = 5

4 ⇒ Q2 =
(
2, 54
)

2t = 3 ⇒ t = 3
2 ⇒ t+ 1

4 = 7
4 ⇒ Q3 =

(
3, 74
)

2t = 4 ⇒ t = 2 ⇒ t+ 1
4 = 9

4 ⇒ Q4 =
(
4, 94
)

Thus the line l intersects only the pixels R3,1, R3,2, R2,2, R2,3, R2,4, R1,4.
The intersection with the pixel R3,1 is the line segment Q0Q1, which can be
shortly written as l ∩R3,1 = Q0Q1. Furthermore

l ∩R3,2 = Q1P1 l ∩R2,2 = P1Q2 l ∩R2,3 = Q2Q3

l ∩R2,4 = Q3P2 l ∩R1,4 = P2Q4

The length of any line segment PQ connecting the points P = (p1, p2) and
Q = (q1, q2) is computed by the formula

√
(p1 − q1)2 + (p2 − q2)2. Hence

λ1 (l ∩R3,1) = λ1
(
Q0Q1

)
=

√
(0− 1)2 +

(
1
4 −

3
4

)2
=
√
5
2

λ1 (l ∩R3,2) = λ1
(
Q1P1

)
=

√(
1− 3

2

)2
+
(
3
4 − 1

)2
=
√
5
4

λ1 (l ∩R2,2) = λ1
(
P1Q2

)
=

√(
3
2 − 2

)2
+
(
1− 5

4

)2
=
√
5
4

λ1 (l ∩R2,3) = λ1
(
Q2Q3

)
=

√
(2− 3)2 +

(
5
4 −

7
4

)2
=
√
5
2

λ1 (l ∩R2,4) = λ1
(
Q3P2

)
=

√(
3− 7

2

)2
+
(
7
4 − 2

)2
=
√
5
4

λ1 (l ∩R1,4) = λ1
(
P2Q4

)
=

√(
7
2 − 4

)2
+
(
2− 9

4

)2
=
√
5
4
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Now we can calculate the line integral of the phantom f along the line l.∫
l

f =
m∑
i=1

n∑
j=1

ai,j · λ1 (l ∩Ri,j) =

= a3,1 · λ1 (l ∩R3,1) + a3,2 · λ1 (l ∩R3,2) + a2,2 · λ1 (l ∩R2,2) +

+a2,3 · λ1 (l ∩R2,3) + a2,4 · λ1 (l ∩R2,4) + a1,4 · λ1 (l ∩R1,4) =

=
1

3
·
√

5

2
+

1

2
·
√

5

4
+

1

3
·
√

5

4
+

1

2
·
√

5

2
+

1

3
·
√

5

4
+

1

2
·
√

5

4
=

5

6

√
5

3.3 Typical line sets for data collection

Basically there are two types of line sets which are commonly used for data
collection in CT: one related to parallel beam x-rays and the other one related
to divergent beam x-rays. We talk about parallel beam x-ray, when there’s
a finite set of directions v1, v2, . . ., vk, and for each direction vi there are
points Pi,1, Pi,2, . . ., Pi,si along a line which is not parallel to vi, and adjacent
points have the same distance from each other. Then the set of lines used for
measurements is {li,j | i ∈ {1, 2, . . . , k} , j ∈ {1, 2, . . . , si}}, where li,j is the
line passing through Pi,j and parallel to vi.
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We talk about divergent beam x-rays when there’s a finite set of points P1,
P2, . . ., Pk, and for each point Pi there are directions vi,1, vi,2, . . ., vi,si . Then
the set of lines used for measurements is {li,j | i ∈ {1, 2, . . . , k} , j ∈ {1, 2, . . . , si}},
where li,j is the line passing through Pi and parallel to vi,j .

3.4 Series expansion method

The idea behind the series expansion method is that, given the picture re-
gion, we choose a set of basis functions b1, b2, . . . , bJ , each of which is a
picture function for the given picture region. These must be chosen such that
for any picture function f that we want to reconstruct, there exists a linear
combination of the basis functions that we consider an adequate approxima-
tion of f . If the line integrals of an unknown function f are given along a
set of lines, then we choose a linear combination of the basis functions whose
line integrals along the same lines are as close to the measurements of f as
possible.

There are many possible choices of the basis functions, such as the gener-
alized Kaiser-Bessel window functions, also known as blobs, which are widely
used in X-ray transmission tomography. However, given an m × n uniform
partition of the picture region, another typical choice is the set of character-
istic functions of the pixels. The characteristic function of the pixel Ri,j is
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the function ri,j of two variables defined by

ri,j(x, y) =

{
1, if (x, y) ∈ Ri,j

0, if (x, y) /∈ Ri,j

Then a linear combination of these characteristic functions is the picture
function

g = xi,j · ri,j
where xi,j ∈ R. Note that g is nothing but the picture function which takes
the constant value xi,j over the pixel Ri,j for each i ∈ {1, 2, . . . ,m} and
j ∈ {1, 2, . . . , n}. Thus the line integral of such function g along any line l
is a linear combination of the variables xi,j , where the coefficient of xi,j is
exactly the length of the intersection of l with the pixel Ri,j . Making the
measurements of an unknown function f equal to the linear combinations of
the variables xi,j , defined by the line integrals along a given set of lines, we
obtain a system of linear equations. Unfortunately not all picture function
f can be given as a linear combination of the characteristic functions ri,j .
Besides there are different sources of error during the data collection, hence
the system may be unsolvable. In such situation we need to introduce an
extra variable ek for each equation of the system, which presents difference
between measurement corresponding to that equation and the line integral of
the picture function provided by the variables xi,j . Then our task is to find a
solution of the system which minimizes the square sum of the extra variables,
i.e. (e1)

2 + (e2)
2 + . . .+ (eK)2.

Example 1

Let R = [0, 4]× [0, 3], m = 3, n = 4. Then the uniform partition of [0, 4] is
a0 = 0, a1 = 1, a2 = 2, a3 = 3, a4 = 4 and the uniform partition of [0, 3] is
c0 = 0, c1 = 1, c2 = 2, c3 = 3. These imply the pixels

R1,1 = [0, 1]× [2, 3] R2,1 = [0, 1]× [1, 2] R3,1 = [0, 1]× [0, 1]
R1,2 = [1, 2]× [2, 3] R2,2 = [1, 2]× [1, 2] R3,2 = [1, 2]× [0, 1]
R1,3 = [2, 3]× [2, 3] R2,3 = [2, 3]× [1, 2] R3,3 = [2, 3]× [0, 1]
R1,4 = [3, 4]× [2, 3] R2,4 = [3, 4]× [1, 2] R3,4 = [3, 4]× [0, 1]

Consider the following set of lines:

� l1, l2, l3, l4 are lines parallel to v1 = (0, 1) and passing through the points
P1,1 =

(
1
2 , 0
)
, P1,2 =

(
3
2 , 0
)
, P1,3 =

(
5
2 , 0
)
, P1,4 =

(
7
2 , 0
)

respectively.
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� l5, l6, l7 are lines parallel to v2 = (1, 0) and passing through the points
P2,1 =

(
0, 52
)
, P2,2 =

(
0, 32
)
, P2,3 =

(
0, 12
)

respectively.

� l8, l9, l10, l11, l12, l13 are lines parallel to v3 = (1, 2) and passing through
the points P3,1 =

(
−5

4 , 0
)
, P3,2 =

(
−1

4 , 0
)
, P3,3 =

(
3
4 , 0
)
, P3,4 =

(
7
4 , 0
)
,

P3,5 =
(
11
4 , 0

)
, P3,6 =

(
15
4 , 0

)
respectively.

Let mk be the line integral of an unknown function f along line lk for
k = 1, 2, . . . , 13, where

m1 = 1, m2 = 3, m3 = 0, m4 = 2
m5 = 2, m6 = 2, m7 = 2,

m8 =
√
5
4 , m9 =

√
5
2 , m10 =

√
5, m11 =

√
5
4 , m12 = 3

√
5

4 , m13 =
√
5
4 .

We try to find the values xi,j , such that the function g, which takes the
constant value xi,j on the pixel Ri,j for all i = 1, 2, 3 and j = 1, 2, 3, 4, has
the line integrals along the lines lk equal to mk for all k = 1, 2, . . . 13.

The line l1 intersects the pixels R1,1, R2,1, R3,1, the line l2 intersects the
pixels R1,2, R2,2, R3,2, the line l3 intersects the pixels R1,3, R2,3, R3,3, and
the line l4 intersects the pixels R1,4, R2,4, R3,4. Each time the length of the
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intersection is 1. Thus the line integrals of g along the lines l1, l2, l3, l4 are

x1,1 + x2,1 + x3,1
x1,2 + x2,2 + x3,2
x1,3 + x2,3 + x3,3
x1,4 + x2,4 + x3,4

respectively. The line l5 intersects the pixels R1,1, R1,2, R1,3, R1,4, the line l6
intersects the pixels R2,1, R2,2, R2,3, R2,4, and the line l7 intersects the pixels
R3,1, R3,2, R3,3, R3,4. Each time the length of the intersection equals to 1.
Thus the line integrals of g along the lines l5, l6, l7 are

x1,1 + x1,2 + x1,3 + x1,4
x2,1 + x2,2 + x2,3 + x2,4
x3,1 + x3,2 + x3,3 + x3,4

respectively. Furthermore the line l8 intersects only the pixel R1,1 in a line

segment of length
√
5
4 . The line l9 intersects the pixels R1,1, R1,2, R3,1 in line

segments of length
√
5
4 , and intersects R2,1 in a line segment of length

√
5
2 . The

line l10 intersects the pixels R1,2, R1,3, R3,1, R3,2 in line segments of length√
5
4 and intersects R2,2 in a line segment of length

√
5
2 . The line l11 intersects

the pixels R1,3, R1,4, R3,2, R3,3 in line segments of length
√
5
4 and intersects

R2,3 in a line segment of length
√
5
2 . The line l12 intersects the pixels R1,4,

R3,3, R3,4 in line segments of length
√
5
4 and intersects R2,4 in a line segment

of length
√
5
2 . Finally l13 intersects only the pixel R3,4 in a line segment of

length
√
5
4 . Thus the line integrals of g along the lines l8, l9, l10, l11, l12, l13

are √
5
4 x1,1√
5
4 x1,1 +

√
5
4 x1,2 +

√
5
2 x2,1 +

√
5
4 x3,1√

5
4 x1,2 +

√
5
4 x1,3 +

√
5
2 x2,2 +

√
5
4 x3,1 +

√
5
4 x3,2√

5
4 x1,3 +

√
5
4 x1,4 +

√
5
2 x2,3 +

√
5
4 x3,2 +

√
5
4 x3,3√

5
4 x1,4 +

√
5
2 x2,4 +

√
5
4 x3,3 +

√
5
4 x3,4√

5
4 x3,4

respectively. Hence making all these line integrals equal to the corresponding
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line integrals of the unknown function f yields the system of equations

x1,1 + x2,1 + x3,1 = 1
x1,2 + x2,2 + x3,2 = 3
x1,3 + x2,3 + x3,3 = 0
x1,4 + x2,4 + x3,4 = 2

x1,1 + x1,2 + x1,3 + x1,4 = 2
x2,1 + x2,2 + x2,3 + x2,4 = 2
x3,1 + x3,2 + x3,3 + x3,4 = 2

√
5
4 x1,1 =

√
5
4√

5
4 x1,1 +

√
5
4 x1,2 +

√
5
2 x2,1 +

√
5
4 x3,1 =

√
5
2√

5
4 x1,2 +

√
5
4 x1,3 +

√
5
2 x2,2 +

√
5
4 x3,1 +

√
5
4 x3,2 =

√
5

√
5
4 x1,3 +

√
5
4 x1,4 +

√
5
2 x2,3 +

√
5
4 x3,2 +

√
5
4 x3,3 =

√
5
4√

5
4 x1,4 +

√
5
2 x2,4 +

√
5
4 x3,3 +

√
5
4 x3,4 = 3

√
5

4√
5
4 x3,4 =

√
5
4


Multiplying each of the last 6 equations by 4√

5
gives

x1,1 + x2,1 + x3,1 = 1
x1,2 + x2,2 + x3,2 = 3
x1,3 + x2,3 + x3,3 = 0
x1,4 + x2,4 + x3,4 = 2

x1,1 + x1,2 + x1,3 + x1,4 = 2
x2,1 + x2,2 + x2,3 + x2,4 = 2
x3,1 + x3,2 + x3,3 + x3,4 = 2

x1,1 = 1
x1,1 + x1,2 + 2x2,1 + x3,1 = 2

x1,2 + x1,3 + 2x2,2 + x3,1 + x3,2 = 4
x1,3 + x1,4 + 2x2,3 + x3,2 + x3,3 = 1

x1,4 + 2x2,4 + x3,3 + x3,4 = 3
x3,4 = 1


Here the unknowns have double index, so before we write the matrix form
of the above system we need to fix an ordering of the above unknowns. This
can be for example the lexicographic order, where xi,j ≤ xk,l holds if i < k,

68



or i = k and j ≤ l. Hence the ordering is

(x1,1, x1,2, x1,3, x1,4, x2,1, x2,2, x2,3, x2,4, x3,1, x3,2, x3,3, x3,4)

Then the above system of equations in matrix form is A · x = b, where

A =



1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1
1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 2 0 0 0 1 0 0 0
0 1 1 0 0 2 0 0 1 1 0 0
0 0 1 1 0 0 2 0 0 1 1 0
0 0 0 1 0 0 0 2 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1


and

x = (x1,1 x1,2 x1,3 x1,4 x2,1 x2,2 x2,3 x2,4 x3,1 x3,2 x3,3 x3,4)
>

b = (1 3 0 2 2 2 2 1 2 4 1 3 1)>

The extended coefficient matrix is

1 0 0 0 1 0 0 0 1 0 0 0 1
0 1 0 0 0 1 0 0 0 1 0 0 3
0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 1 2
1 1 1 1 0 0 0 0 0 0 0 0 2
0 0 0 0 1 1 1 1 0 0 0 0 2
0 0 0 0 0 0 0 0 1 1 1 1 2
1 0 0 0 0 0 0 0 0 0 0 0 1
1 1 0 0 2 0 0 0 1 0 0 0 2
0 1 1 0 0 2 0 0 1 1 0 0 4
0 0 1 1 0 0 2 0 0 1 1 0 1
0 0 0 1 0 0 0 2 0 0 1 1 3
0 0 0 0 0 0 0 0 0 0 0 1 1


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This can transformed to reduced row echelon form with Gauss elimination.
The reduced row echelon form is

1 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 1 0 2
0 0 1 0 0 0 0 0 0 −1 0 0 −1
0 0 0 1 0 0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0 0 −1 −1 0 −1
0 0 0 0 0 1 0 0 0 0 −1 0 1
0 0 0 0 0 0 1 0 0 1 1 0 1
0 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0


This shows that we have two free variables x3,2 and x3,3. The rest of the
variables can be given as



x1,1
x1,2
x1,3
x1,4
x2,1
x2,2
x2,3
x2,4
x3,1
x3,4


=



0 0
−1 −1
1 0
0 1
1 1
0 1
−1 −1
0 −1
−1 −1
0 0


·
(
x3,2
x3,3

)
+



1
2
−1
0
−1
1
1
1
1
1


This can be arranged in the same manner as in the case of a matrix:

x1,1 = 1 x1,2 = 2− x3,2 − x3,3 x1,3 = x3,2 − 1 x1,4 = x3,3

x2,1 = x3,2 + x3,3 − 1 x2,2 = x3,3 + 1 x2,3 = 1− x3,2 − x3,3 x2,4 = 1− x3,3

x3,1 = 1− x2,3 − x3,3 x3,2 = x3,2 x3,3 = x3,3 x3,4 = 1

Now let’s find the non-negative solutions. Then we have the following system
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of linear inequalities:
2− x3,2 − x3,3≥ 0

x3,2 − 1≥ 0
x3,3≥ 0

x3,2 + x3,3 − 1≥ 0
x3,3 + 1≥ 0

1− x3,2 − x3,3≥ 0
1− x3,3≥ 0

x3,2≥ 0


Here the fourth and sixth inequalities imply that x3,2 + x3,3 − 1 = 0, and
hence x3,3 = 1−x3,2. This can be substituted into the rest of the inequalities.

1≥ 0
x3,2 − 1≥ 0
1− x3,2≥ 0
2− x3,2≥ 0

x3,2≥ 0
x3,2≥ 0


Here the second and third inequalities together imply that x3,2 − 1 = 0, that
is x3,2 = 1 and then x3,3 = 1− x3,2 = 0. It’s easy to check that x3,2 = 1 and
x3,3 = 0 is a solution of the above system of inequalities. Thus substituting
x3,2 = 1 and x3,3 = 0 into the solutions of the system of equations gives that
the only non-negative solution is

x1,1 = 1 x1,2 = 1 x1,3 = 0 x1,4 = 0
x2,1 = 0 x2,2 = 1 x2,3 = 0 x2,4 = 1
x3,1 = 0 x3,2 = 1 x3,3 = 0 x3,4 = 1

Example 2

Let R = [0, 4]× [0, 3], m = 3, n = 4. Then the uniform partition of [0, 4] is
a0 = 0, a1 = 1, a2 = 2, a3 = 3, a4 = 4 and the uniform partition of [0, 3] is
c0 = 0, c1 = 1, c2 = 2, c3 = 3. These imply the pixels

R1,1 = [0, 1]× [2, 3] R2,1 = [0, 1]× [1, 2] R3,1 = [0, 1]× [0, 1]
R1,2 = [1, 2]× [2, 3] R2,2 = [1, 2]× [1, 2] R3,2 = [1, 2]× [0, 1]
R1,3 = [2, 3]× [2, 3] R2,3 = [2, 3]× [1, 2] R3,3 = [2, 3]× [0, 1]
R1,4 = [3, 4]× [2, 3] R2,4 = [3, 4]× [1, 2] R3,4 = [3, 4]× [0, 1]
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Consider the following set of lines:

� l1, l2, l3, l4, l5 are lines passing through the point P1 =
(
9
2 ,

3
2

)
and par-

allel to the vectors v1,1 = (1,−1), v1,2 = (3,−1), v1,3 = (1, 0), v1,4 =
(3, 1), v1,5 = (1, 1) respectively.

� l6, l7, l8, l9, l10 are lines passing through the point P2 = (2, 4) and paral-
lel to the vectors v2,1 = (1, 1), v2,2 = (3, 5), v2,3 = (1, 7), v2,4 = (1,−7),
v2,5 = (3,−5) respectively.

� l11, l12, l13, l14, l15 are lines passing through the point P3 = (4, 3) and
parallel to the vectors v3,1 = (5, 1), v3,2 = (5, 3), v3,3 = (1, 1), v3,4 =
(3, 5), v3,5 = (1, 5) respectively.

Let mk be the line integral of an unknown function f along line lk for
k = 1, 2, . . . , 15, where

m1 = 0, m2 = 2
√
10
3 , m3 = 3, m4 = 2

√
10
3 m5 =

√
2

m6 = 0, m7 =
√
34
5 , m8 = 10

√
2

7 , m9 = 5
√
2

7 m10 = 4
√
34

15

m11 =
√
26
5 , m12 = 2

√
34
5 , m13 =

√
2, m14 =

√
34
5 , m15 = 2

√
26
5

We try to find the values xi,j , such that the function g, which takes the
constant value xi,j on the pixel Ri,j for all i = 1, 2, 3 and j = 1, 2, 3, 4, has
the line integrals along the lines lk equal to mk for all k = 1, 2, . . . 15.
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� The line l1 intersects only the pixel R1,4 and the length of the intersec-
tion is

√
2.

� The line l2 intersects the pixels R1,1, R1,2, R1,3, R2,4. The length of the

intersection equals to
√
10
3 in each case.

� The line l3 intersects the pixels R2,1, R2,2, R2,3, R2,4. The length of the
intersection equals to 1 in each case.

� The line l4 intersects the pixels R3,1, R3,2, R3,3, R2,4. The length of the

intersection equals to
√
10
3 in each case.

� The line l5 intersects only the pixel R3,4 and the length of the intersec-
tion is

√
2.

� The line l6 intersects only the pixel R1,1 and the length of the intersec-
tion is

√
2.

� The line l7 intersects the pixels R1,1, R1,2, R2,1, R3,1. The lengths of

the intersections are
√
34
15 , 2

√
34

15 ,
√
34
5 ,

√
34
15 , respectively.

� The line l8 intersects the pixels R1,2, R2,2, R3,2. The length of the

intersection equals to 5
√
2

7 in each case.

� The line l9 intersects the pixels R1,3, R2,3, R3,3. The length of the

intersection equals to 5
√
2

7 in each case.

� The line l10 intersects the pixels R1,3, R1,4, R2,4, R3,4. The lengths of

the intersections are
√
34
15 , 2

√
34

15 ,
√
34
5 ,

√
34
15 , respectively.

� The line l11 intersects the pixels R1,1, R1,2, R1,3, R2,4. The length of

the intersection equals to
√
26
5 in each case.

� The line l12 intersects the pixels R1,3, R1,4, R2,1, R2,2, R2,3, R3,1. The

lengths of the intersections are 2
√
34

15 ,
√
34
5 ,

√
34
15 ,

√
34
5 ,

√
34
15 , 2

√
34

15 , respec-
tively.

� The line l13 intersects the pixels R1,4, R2,3, R3,2. The length of the
intersection equals to

√
2 in each case.
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� The line l14 intersects the pixels R1,4, R2,3, R2,4, R3,3. The lengths of

the intersections are
√
34
5 ,

√
34
15 , 2

√
34

15 ,
√
34
5 respectively.

� The line l15 intersects the pixels R1,4, R2,4, R3,4. The length of the

intersection equals to
√
26
5 in each case.

Hence making all the line integrals of g equal to the corresponding line
integrals of the unknown function f yields the system of equations

√
2x1,4 = 0

√
10
3 x1,1 +

√
10
3 x1,2 +

√
10
3 x1,3 +

√
10
3 x2,4 = 2

√
10
3

x2,1 + x2,2 + x2,3 + x2,4 = 3
√
10
3 x3,1 +

√
10
3 x3,2 +

√
10
3 x3,3 +

√
10
3 x2,4 = 2

√
10
3√

2x3,4 =
√

2
√

2x1,1 = 0
√
34
15 x1,1 + 2

√
34

15 x1,2 +
√
34
5 x2,1 +

√
34
15 x3,1 =

√
34
5

5
√
2

7 x1,2 + 5
√
2

7 x2,2 + 5
√
2

7 x3,2 = 10
√
2

7

5
√
2

7 x1,3 + 5
√
2

7 x2,3 + 5
√
2

7 x3,3 = 5
√
2

7√
34
15 x1,3 + 2

√
34

15 x1,4 +
√
34
5 x2,4 +

√
34
15 x3,4 = 4

√
34

15√
26
5 x1,1 +

√
26
5 x1,2 +

√
26
5 x1,3 +

√
26
5 x2,4 =

√
26
5

2
√
34

15 x1,3 +
√
34
5 x1,4 +

√
34
15 x2,1 +

√
34
5 x2,2 +

√
34
15 x2,3 + 2

√
34

15 x3,1 = 2
√
34
5√

2x1,4 +
√

2x2,3 +
√

2x3,2 =
√

2
√
34
5 x1,4 +

√
34
15 x2,3 + 2

√
34

15 x2,4 +
√
34
5 x3,3 =

√
34
5√

26
5 x1,4 +

√
26
5 x2,4 +

√
26
5 x3,4 = 2

√
26
5


Here we multiply the the first equation by 1√

2
, the second equation by 3√

10
,

the fourth equation by 3√
10

, the fifth and sixth equations by 1√
2
, the seventh

equation by 15√
34

, the eighth and ninth equations by 7
5
√
2
, the tenth equation by

15√
34

, the eleventh equation by 5√
26

, the twelfth equation by 15√
34

, the thirteenth

equation by 1√
2
, the fourteenth equation by 15√

34
, and the fifteenth equation
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by 5√
26

. Then all coefficients of the system are integers.

x1,4 = 0

x1,1 + x1,2 + x1,3 + x2,4 = 2

x2,1 + x2,2 + x2,3 + x2,4 = 3

x3,1 + x3,2 + x3,3 + x2,4 = 2

x3,4 = 1

x1,1 = 0

x1,1 + 2x1,2 + 3x2,1 + x3,1 = 3

x1,2 + x2,2 + x3,2 = 2

x1,3 + x2,3 + x3,3 = 1

x1,3 + 2x1,4 + 3x2,4 + x3,4 = 4

x1,1 + x1,2 + x1,3 + x2,4 = 1

2x1,3 + 3x1,4 + x2,1 + 3x2,2 + x2,3 + 2x3,1 = 6

x1,4 + x2,3 + x3,2 = 1

3x1,4 + x2,3 + 2x2,4 + 3x3,3 = 3

x1,4 + x2,4 + x3,4 = 2


Assuming lexicographic order of the variables the extended coefficient matrix
is

(
A
∣∣b)



0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0 2
0 0 0 0 1 1 1 1 0 0 0 0 3
0 0 0 0 0 0 0 1 1 1 1 0 2
0 0 0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0
1 2 0 0 3 0 0 0 1 0 0 0 3
0 1 0 0 0 1 0 0 0 1 0 0 2
0 0 1 0 0 0 1 0 0 0 1 0 1
0 0 2 1 0 0 0 3 0 0 0 1 4
1 1 1 1 0 0 0 0 0 0 0 0 1
0 0 2 3 1 3 1 0 2 0 0 0 6
0 0 0 1 0 0 1 0 0 1 0 0 1
0 0 0 3 0 0 1 2 0 0 3 0 3
0 0 0 1 0 0 0 1 0 0 0 1 2


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If we transform it into reduced row echelon form with the help of Gaussian
elimination, then we get

1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0


Each column contains a pivot element except the last one, which means the
system is solvable, and has a unique solution. This solution is

x1,1 = 0 x1,2 = 1 x1,3 = 0 x1,4 = 0
x2,1 = 0 x2,2 = 1 x2,3 = 1 x2,4 = 1
x3,1 = 1 x3,2 = 0 x3,3 = 0 x3,4 = 1
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4 Discrete tomography

4.1 Reconstruction of binary matrices with prescribed
row and column sums

A matrix A is called binary matrix, if all elements of A are either one or
zero. The row sum vector of the binary matrix A of size m× n is the vector
R = (r1, r2, . . . , rm), where

n∑
j=1

ai,j = ri, i ∈ {1, 2, . . . ,m}

In other words ri equals to number of ones in the i-th row of A for each
i ∈ {1, 2, . . . ,m}. The column sum vector of the binary matrix A of size
m× n is the vector S = (s1, s2, . . . , sn), where

m∑
i=1

ai,j = sj , j ∈ {1, 2, . . . , n}

In other words sj equals to number of ones in the j-th column of A for each
j ∈ {1, 2, . . . , n}.

It’s easy to see, that if A is any binary matrix of size m × n, and its row
and column sum vectors are R and S, then

1. all elements of R and S are non-negative integers,

2. R has no element which is larger than n, and S has no element which
is larger than m,

3. the sum of the elements in R equals to the sum of the elements in S,
that is

m∑
i=1

ri =
n∑

j=1

sj .
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The first two statements is quite trivial, while the third is just the consequence
of the fact, that both

∑m
i=1 ri and

∑n
j=1 sj equals to the total number of ones

in the matrix A.

Definition 10 Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be two vec-
tors, whose elements are non-negative integers. The vectors R and S are
called compatible if

1. ri ≤ n for all i ∈ {1, 2, . . . ,m},

2. sj ≤ m for all j ∈ {1, 2, . . . , n},

3.
m∑
i=1

ri =
n∑

j=1

sj .

Note that if the vectors R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) are
not compatible, then there’s no binary matrix of size m× n whose row sum
vector is R and column sum vector is S.

Given the row sum vector R = (r1, r2, . . . , rm) and the number of columns
n the maximal matrix corresponding to R is the binary matrix A of size m×n
which satisfies

aij =

{
1 if j ≤ ri,
0 if ri < j.

for all i ∈ {1, 2, . . . ,m}

In other words the first ri elements of the i-th row of the maximal matrix
equal to one, while the rest of the elements in the i-th row equal to zero.
The maximal matrix with n columns corresponding to the row sum vector
R is denoted by A, and the column sum vector of the maximal matrix is
denoted by S = (s1, s2, . . . , sn). Furthermore let’s denote the nonincreasing
permutation of any column sum vector S by S′ = (s′1, s

′
2, . . . , s

′
n).

Theorem 8 Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be two compat-
ible integer vectors. There exists a binary matrix with row sum vector R and
column sum vector S if and only if

k∑
j=1

s′j ≤
k∑

j=1

sj for all k ∈ {1, 2, . . . , n}
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Furthermore this binary matrix is unique if and only if all the above inequal-
ities are satisfied with equalities.

The above theorem can be used to decide whether there’s a binary matrix
with given row sum and column sum vector or not, and also to decide whether
the solution is unique or not. However it tell nothing about how to find such
matrix. If we know that there’s a solution of the problem then the following
procedure can be used.

Let R = (r1, r2, . . . , rm) and S = (s1, s2, . . . , sn) be two compatible integer
vectors that satisfy the condition

k∑
j=1

s′j ≤
k∑

j=1

sj for all k ∈ {1, 2, . . . , n}

Let the matrix A be equal to the maximal matrix A at the beginning of the
procedure. Then

1. If there’s no column index k such that s′k is larger than the sum of the
elements of A in the k-th column, then go to step 6.

2. Choose the largest column index k such that s′k is larger than the sum
of the elements of A in the k-th column.

3. Choose the largest column index l, such that it’s less than k and the
l-th column of A contains at least one nonzero element.

4. Let i denote the largest row index such that ai,l = 1. Then change the
value of ai,l to zero and change the value of ai,k to one (which must be
zero before the change if the above conditions are satisfied).

5. Repeat steps (2)-(4) until there’s no column index k such that s′k is
larger than the sum of the elements of A in the k-th column.

6. Now the matrix A must have row sum vector R and column sum vector
S′. Find a permutation that transforms S′ into S and apply the same
permutation for the columns of A

By the end of the above procedure A has row sum vector R and column sum
vector S.

79



Example 1

Let R = (2, 6, 4, 3, 3) and S = (3, 4, 6, 2, 2, 1). Then there’s no binary matrix
of size 5× 6 which has row sum vector R and column sum vector S, because
S has an element larger than 5, and hence the vectors R and S are not
compatible.

Example 2

Let R = (5, 4, 2, 3, 3) and S = (2, 3, 1, 4, 4, 2). Then there’s no binary matrix
of size 5× 6 which has row sum vector R and column sum vector S, because

5∑
i=1

ri = 5 + 4 + 2 + 3 + 3 = 17 and
6∑

j=1

sj = 2 + 3 + 1 + 4 + 4 + 2 = 16

and hence the vectors R and S are not compatible.

Example 3

Let R = (3, 5, 2, 3, 1) and S = (0, 2, 4, 4, 4, 0). Then R and S are compatible
and the maximal matrix corresponding to R is

A =


1 1 1 0 0 0
1 1 1 1 1 0
1 1 0 0 0 0
1 1 1 0 0 0
1 0 0 0 0 0


Thus S′ = (4, 4, 4, 2, 0, 0) and S = (5, 4, 3, 1, 1, 0). Here

4 ≤ 5 =⇒ s′1 ≤ s1
4 + 4 ≤ 5 + 4 =⇒ s′1 + s′2 ≤ s1 + s2

4 + 4 + 4 ≤ 5 + 4 + 3 =⇒ s′1 + s′2 + s′3 ≤ s1 + s2 + s3
4 + 4 + 4 + 2 > 5 + 4 + 3 + 1 =⇒ s′1 + s′2 + s′3 + s′4 > s1 + s2 + s3 + s4

Hence there’s no binary matrix of size 5× 6 which has row sum vector R and
column sum vector S, because

k∑
j=1

s′j ≤
k∑

j=1

sj
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is not satisfied for all k ∈ {1, 2, . . . , 6}.

Example 4

Let R = (2, 3, 5, 5, 3) and S = (1, 3, 4, 5, 4, 1). Then R and S are compatible
and the maximal matrix corresponding to R is

A =


1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 0 0 0


Thus S′ = (5, 4, 4, 3, 1, 1) and S = (5, 5, 4, 2, 2, 0). Here

5 ≤ 5
5 + 4 ≤ 5 + 5

5 + 4 + 4 ≤ 5 + 5 + 4
5 + 4 + 4 + 3 ≤ 5 + 5 + 4 + 2

5 + 4 + 4 + 3 + 1 ≤ 5 + 5 + 4 + 2 + 2
5 + 4 + 4 + 3 + 1 + 1 ≤ 5 + 5 + 4 + 2 + 2 + 0

Hence
k∑

j=1

s′j ≤
k∑

j=1

sj

is satisfied for all k ∈ {1, 2, . . . , 6}, and there exists a binary matrix of size
5× 6 which has row sum vector R and column sum vector S. This matrix is
not unique, because some of the above inequalities are strict. Now let’s find
a binary matrix with row sum vector R and column sum vector S.

1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 1 0
1 1 1 0 0 0


5 4 4 3 1 1

−→


1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 0 1
1 1 1 0 0 0


5 4 4 3 1 1

−→
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−→


1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 0 1
1 1 0 1 0 0


5 4 4 3 1 1

−→


1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 0 1
1 0 1 1 0 0


5 4 4 3 1 1

Now the last matrix has row sum vector R and column sum vector S′. Let’s
permute the columns to get column sum vector S.

1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 1 0
1 1 1 1 0 1
1 0 1 1 0 0


5 4 4 3 1 1

−→


0 0 0 1 1 0
0 0 1 1 1 0
1 1 1 1 1 0
0 1 1 1 1 1
0 1 1 1 0 0


1 3 4 5 4 1

The matrix on the right has row sum vector R and column sum vector S.

Example 5

Let R = (6, 3, 4, 2, 2) and S = (1, 2, 5, 5, 3, 1). Then R and S are compatible
and the maximal matrix corresponding to R is

A =


1 1 1 1 1 1
1 1 1 0 0 0
1 1 1 1 0 0
1 1 0 0 0 0
1 1 0 0 0 0


Thus S′ = (5, 5, 3, 2, 1, 1) and S = (5, 5, 3, 2, 1, 1). Here S′ = S, and hence

k∑
j=1

s′j ≤
k∑

j=1

sj

is satisfied for all k ∈ {1, 2, . . . , 6}, and there exists a binary matrix of size
5 × 6 which has row sum vector R and column sum vector S. This matrix
is unique, because the above inequalities are all satisfied with equalities. To
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find a binary matrix with row sum vector R and column sum vector S it’s
enough to permute the columns of the maximal matrix.


1 1 1 1 1 1
1 1 1 0 0 0
1 1 1 1 0 0
1 1 0 0 0 0
1 1 0 0 0 0


5 5 3 2 1 1

−→


1 1 1 1 1 1
0 0 1 1 1 0
0 1 1 1 1 0
0 0 1 1 0 0
0 0 1 1 0 0


1 2 5 5 3 1

The matrix on the right has row sum vector R and column sum vector S.

4.2 Graphs

A (simple) graph consists of a (non-empty) finite set V of elements called
vertices (or nodes), a finite set E of elements called edges, and a function
f which assigns a subset of two elements of V to every element of E, such
that if e1 6= e2, then f(e1) 6= f(e2). If f(e) = {u, v} for an e ∈ E and some
u, v ∈ V then we say the edge connects the vertices u and v. In such case the
vertices u and v are called adjacent, and we say u is a neighbor of v, and
v is a neighbor of u. We may also write uv ∈ E and say uv is an edge of the
graph, if there exists e ∈ E such that f(e) = uv. We note that if uv is an edge,
then vu is the same edge of the graph. A graph can be visualized in the plane
by presenting the vertices as points of the plane and presenting the edges
as curves or line segments connecting the vertices. It doesn’t matter how we
arrange the points, or how the shape of the curves presenting the edges looks
like, the only important thing is to define which vertices are connected by
which edges. The edges may cross each other in points which are not vertices
of the graph.
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A (simple) directed graph consists of a (non-empty) finite set V of
elements called vertices (or nodes), a finite set E of elements called edges,
and a function f which assigns an ordered pair of elements of V to every
element of E, such that if e1 6= e2, then f(e1) 6= f(e2). We say the vertex
u is connected to v if there exists e ∈ E, such that f(e) = (u, v). In this
case we may write uv ∈ E and say uv is and edge of the directed graph, and
v is called an out-neighbor of u, while u is called an in-neighbor of v. If
f(e) = (u, v), then u is called the initial vertex and v is celled the terminal
vertex of the directed edge e. Note that if uv is an edge of a directed graph
it my happen that vu is not an edge. A directed graph can be visualized in
the plane by presenting the vertices as points of the plane and presenting the
edges as directed curves or directed line segments connecting the vertices.

Given a graphG, a walk in the graph is a finite sequence of edges e1, e2, . . . , em
such that ei−1 and ei have a common vertex for all i ∈ {2, 3, . . . ,m}. A (di-
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rected) walk in a directed graph is a finite sequence of edges e1, e2, . . . , em
such that the terminal vertex of ei−1 is the initial vertex of ei for all i ∈
{2, 3, . . . ,m}. Any walk determines the sequence of vertices v0, v1, . . . , vm,
where ei connects the vertices vi−1 and vi (or vi−1 is connected to vi by the
edge ei in the case of a directed graph). A walk in which all the edges are dis-
tinct is called a trail. If, in addition, all the vertices v0, v1, . . . , vk determined
by the path/trail are distinct (except possibly v0 = vm), then it’s called a
path. A path or trail is closed if v0 = vm, and a closed path is called a
cycle. The length of a path of r

We say that a graph is connected if there exists a path between any pair
of vertices. A connected graph which contains no cycle is called a tree.

The length of a path or a cycle is the number of edges in it. The distance
of the vertices s and t in a connected graph is the length the shortest path
connecting s and t. Given a vertex of s ∈ V of any (directed) graph there’s
an easy method to find the distance of any further vertex form s which can
be connected to s with a path. It’s based on assigning labels to the veritces
that give the distances from s.

1. Assign the label zero to the vertex s.

2. Assuming that the highest label of the vertices of the graph is k ∈ Z,
look for the unlabeled neighbors (or out-neighbors) of the vertices with
label k. If there’s at least one such neighbor (or out-neighbor) then
assign the label k + 1 to them.
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3. Repeat step 2 as long as possible.

4. If the vertices with the highest label have no unlabeled neighbors (or
out-neighbors) then we found all the distances of the vertices of the
graph which can be connected to s with a path. If there are still unla-
beled vetrices, then those cannot be accessed from s via any path.

The labels assigned by the above procedure give the distances form s. Then
it’s also possible to find a shortest path connecting s to a vetrex t with the
help of these distances. If t has no labeled then it cannot be accessed from
s. Otherwise let the label of t be k ∈ Z. Then t must have a neighbor (or
in-neighbor) denoted by vk−1 which has label k − 1. The vertex vk−1 must
have a neighbor (or in-neighbor) denoted by vk−2 which has label k − 2.
Tis can be continued until a vertex v1 with label 1 is found. Then s must
be a neighbor (or in-neighbor) of v1, thus the vertices s, v1, v2, . . . , vk−1, t
determine a shortest path form s to t.

Figure 4.1: The distances from the vertex v1 and the shortest path connecting
v1 and v15

4.3 Networks and flows

A network is a directed graph, where non-negative real numbers are assigned
to the directed edges, which are called capacities. The capacity of the edge e
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Figure 4.2: The distances in a directed graph from the vertex v1 and the
shortest directed path connecting v1 and v15

is denoted by U(e), and U is called the capacity function. The out-degree of a
vertex v is the sum of the capacities of all edges vu where u is an out-neighbor
of v. The in-degree of a vertex v is the sum of the capacities of all edges uv
where u is an in-neighbor of v. Given two specified vetrices s and t, which
are called source and sink, a flow is a function Y : E → R with non-negative
values such that

1. Y (e) ≤ U(e) for all e ∈ E,

2. the out-degree and the in-degree equal to each other for any vertex,
except for s and t.

Given a network and the flow, an edge e is called saturated if Y (e) = U(e),
otherwise it’s called unsaturated. The size of a flow is the sum of the values
of the flow on the edges whose initial vertex is s. The size of the flow must
also be equal to the sum of the values of the flow on the edges whose terminal
vertex is t. A flow is called maximal if there’s no other flow on the same
network, whose size would be larger. A flow is called integral flow, if all its
values are integers. A flow-augmenting path is an undirected path from
the source s to the sink t, which satisfies the following: moving form s to t
along an edge e of the undirected path,
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Figure 4.3: The distances in a directed graph from the vertex v1 when there’s
no directed path connecting v1 and v15

1. if the movement has the same direction as the direction of e in the
directed graph, then Y (e) < U(e),

2. if the movement has the opposite direction as the direction of e in the
directed graph, then 0 < Y (e).

If there’s an flow-augmenting path then we can compute the minimum of the
values U(e) − Y (e) for edges of the path when the movement has the same
direction as the direction of e together with the values Y (e) for edges of the
path when the movement has the opposite direction as the direction of e. Let
this minimum be denoted by α. Then we can increase the values of the flow
by α along edges of the path, when the movement has the same direction as
the direction of e, and decrease the values of the flow by α for edges of the
path, when the movement has the opposite direction as the direction of e.
This change in the values of the flow results a valid flow on the same network
with a larger size.

Theorem 9 A flow on a network is maximal if and only if there exists no
flow-augmenting path for the flow.
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