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 FOURIER'S METHOD OF LINEAR PROGRAMMING AND ITS DUAL

 H. P. WILLIAMS

 Faculty of Mathematical Studies, University of Southampton, Southampton S09 5NH, U.K

 Introduction. There has been widespread popular interest in recent years in suggested im-
 proved methods for solving Linear Programming (LP) models. In 1977 Shor [13] described a new
 algorithm for LP. Khachian [7] modified this algorithm in order to prove that the number of
 computational steps was, in the worst case, bounded by a polynomial function of the size of the
 data. This method has become known as the Ellipsoid Method. It has in practice been disappoint-
 ing in experimental computational performance. In 1984 Karmarker [6] produced another

 algorithm which was also "polynomially bounded" with spectacular practical computational
 claims. Controversy continues as to whether Karmarker's method will displace the Simplex
 Method. The Simplex Method was invented by Dantzig in 1948 and is well explained in Dantzig
 [1]. Although it is not polynomial in the worst case it has proved a remarkably powerful method
 in practice and its major extension, the Revised Simplex Method, is the method used in all
 commercial systems.

 The reason for the widespread popular interest (both Khachian and Karmarker's methods
 received headlines in the national press) is that LP models are among the most widely used type
 of Mathematical Model. Applications of LP arise in Manufacturing, Distribution, Finance,
 Agriculture, Health, Energy and general Resource Planning. A practical discussion of application

 areas is contained in Williams [16].
 In this article we show that, predating all these methods, a method discovered by Fourier in

 1826 for manipulating linear inequalities can be adapted to Solving Linear Programming models.
 The theoretical insight given by this method is demonstrated as well as its clear geometrical
 interpretation. By considering the dual of a linear programming model it is shown how the
 method gives rise to a dual method. This dual method generates all extreme solutions (including
 the optimal solution) to a linear programme. Therefore if a polytope is defined in terms of its
 facets the dual of Fourier's method provides a method of obtaining all vertices.

 An LP model consists of variables (e.g., xI, x2,...,etc.) contained in a linear expression
 known as an objective function. Values are sought for the variables which maximise or minimise
 the objective function subject to constraints. These constraints are themselves linear expressions
 which must be either less-than-or-equal to ('<), greater-than-or-equal to (>) or equal to (=)
 some specified value. For example, the following is a small LP model.

 Find values for xl, x2,. . . among the real numbers so as to:

 Maximise -4x, + 5x2 + 3x3

 P subject to -xl + X2 - X3 < 2
 constraints x1 + ? X2 + 2x3 < 3?

 Xl>0, X 2 > 0,1 x3 >1

 It is usually the case that the variables are restricted to be non-negative as in the example above.

 Paul Williams was born in Cornwall, England, in 1943 and educated at Redruth Grammar School. He graduated
 in Mathematics from Cambridge University as well as obtaining an Athletics Blue as a hurdler. This was followed
 by a Ph.D. in Mathematical Logic from Leicester University. It was during this time that he first "discovered" the
 procedure described in this paper only to find out, some years later, about Fourier's work.

 He worked for IBM for a number of years developing Mathematical Programming Software and liaising with
 clients. In 1976 he was appointed to the first Chair of Management Science at Edinburgh University. Then, in 1984,
 he moved to the Chair of Operational Research at Southampton University. He is the author of a well-known book
 "Model Building in Mathematical Programming". His main research interest is in Integer programming.

 Professor Williams is married with three children. He is still most at home in Cornwall where he has a cottage
 and spends as much time as he can.
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 682 H. P. WILLIAMS [November

 In practical applications there are sometimes thousands of variables and constraints (a mixture
 of < , > and =). Typical objective functions represent profit (to be maximised) or cost (to be
 minimised).

 It is not widely known that in 1826 the French mathematician Fourier [5] devised a method of
 manipulating Linear Inequalities. He was not concerned with optimising any expression but
 rather with deriving the set of solutions to a system of inequalities (in an analogous way to solving
 a set of simultaneous equations). His method has been rediscovered a number of times in
 different contexts. A brief account of some of these is given later.

 Fourier's method can comparatively easily be adapted to solving LP models, i.e., Optimising
 an objective function subject to linear inequalities and equations. While the method results in
 prohibitively large storage requirements for anything but small models it is extremely illuminating
 and much easier to understand than the Simplex Algorithm. In addition it is a clear way of
 demonstrating certain theoretical properties of LP models as well as providing more information
 about other possible solutions.

 The method can also be used in a dual form to provide another algorithm for solving LP
 models which generates all vertex solutions. Geometrical interpretations of both the original
 (known as the primal) method and the dual method are given later.

 Founrer's method. In order to demonstrate Fourier's method we will consider an LP model in
 a standard form as a maximisation subject to < constraints. Clearly any model can be converted
 into this standard form.

 When we try to solve an LP one of three possibilities results.

 (i) The model is infeasible, i.e., there are no values for the variables which satisfy all
 constraints simultaneously.

 (ii) The model is unbounded, i.e., the value of the objective function can be increased without
 limit by choosing values for the variables.

 (iii) The model is solvable, i.e., there exists a set of values for the variables giving a finite
 optimal value to the objective function.

 Although case (iii) applies to our illustrative numerical example, it will be obviolus in the
 method how cases (i) and (ii) manifest themselves.

 In order to demonstrate the method we will use the model P above. Since we wish to maximise
 - 4x1 + 5x2 + 3x3 as well as solve the inequalities we will consider the model in the form:

 Maximise z

 subject to: 4x1 - 5x2 - 3x3 + z < 0 Co
 -x? + x2- x3 < 2 C1

 P1 x+ x2+ 2x3 < 3 C2
 -xl 6 <0 C3

 - x2 < 0 C4
 - x3 < 0. C5

 Constraint CO is really a way of saying we wish to maximise z where

 z < -4x, + 5x2 + 3x.

 By maximising z we will "drive" it up to the maximum value of the objective function. It would
 clearly be possible to treat CO as an equation but for simplicity of exposition we are treating all
 constraints as < inequalities.

 Fourier gives a method of eliminating variables from inequalities. We will eliminate
 X1, X2,. ...,etc., from the inequalities CO,Cl,...,etc., until we are left with inequalities in z
 above. Then the maximum possible value of z will be apparent.

 To eliminate a variable from a set of inequalities, Fourier pointed out that we must consider
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 1986] FOURIER S METHOD OF LINEAR PROGRAMMING AND ITS DUAL 683

 all pairs of inequalities in which the inequality has opposite sign and eliminate between each pair.
 To demonstrate this we will first consider the import of constraints CO and Cl above.

 CO can be written as

 4x1 < (5x2 + 3X3 -Z);

 Cl can be written as

 xl > -2 + X2 - X3.

 Therefore we have

 (1) -2?+ X2-X3 < x 1 (5x2 + 3X3-zZ)-
 Since xl is a real number and the real numbers form a continuum (in contrast to the natural
 numbers), the import of the pair of inequalities above is that

 (2) -2+x 2-X3 < (5X2 + 3X3-Z),

 i.e.,

 (3) - X2-7X3 + z < 8.
 This constraint is more easily arrived at by simply adding 4 times constraint Cl to CO above to

 eliminate xl.
 We have shown that if there is a solution to the inequalities such as CO and Cl, there must be

 a solution to the derived inequality (3). Conversely, if there is a solution to an inequality such as
 (3), writing it in the form (2) demonstrates that there exists a value of xl satisfying (1). In order
 to give xl a value we can take the value of either the left-hand-side or the right-hand-side of the
 inequality (2) (or any value in between).

 Since xl also occurs in constraints C2 and C3, we must also eliminate it between all the other
 pairs in which it has opposite sign, i.e., (CO, C3), (Cl, C2) and (C2, C3). If we fail to consider
 every possible pair we are in danger of losing information and generating spurious (infeasible)
 solutions.

 These eliminations result in the transformed model:

 Maximise z

 subject to: -x2 -7x3 +z < 8 CO + 4C1
 P2 -5x2 -3x3 +z < O CO + 4C3

 2x2 + X3 < 5 C1 + C2
 x2 +2x3 < 3 C2 + C3

 - x2 < 0 C4
 - X3 < 0. C5

 The origins of the combined constraints are indicated. It is convenient (but not strictly necessary)
 always to keep the coefficient of z (the objective), where it occurs, as 1. In order to do this, for
 example, we add 4 times Cl to CO in preference to 4 times CO to Cl or any other combination
 which reduces the new coefficient of xl to zero.

 If P1 has a solution (giving values for X2, X3 and z), then we have shown P2 must have a
 solution. Conversely, if P2 has a solution, then a value of xl can be found, which satisfies P1,
 using the argument above.

 It is worth contrasting this elimination procedure (for inequalities) with Gaussian elimination
 (for equations). If the variable to be eliminated has a nonzero coefficient in an equation, this
 equation (known as the pivot equation) can be used to eliminate the variable from all other
 equations. With inequalities our elimination procedure is clearly more complex, although should
 such an equation be present (together with inequalities) we can still use it in this way.

 Having eliminated xl we now eliminate another variable. There is complete flexibility in the
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 684 H. P. WILLIAMS [November

 order in which the variables are eliminated. For convenience we will continue to eliminate the
 variables in consecutive order and to choose x2. The pairs of constraints in which x2 have
 opposite sign are

 (CO + 4C1,Cl + C2), (CO + 4C3,C1 + C2),(C1 + C2,C4),

 (CO + 4C1,C2 + C3),(CO + 4C3,C2 + C3) and (C2 + C3,C4).

 Combining those constraints in suitable multiples in order to eliminate x2 reduces the model to:

 Maximise z

 subjectto: -- 2X3 +Z 21 (CO + 4C1) + I(C1 + C2)

 P3 - 1 X3 +z < 25 (CO + 4C3)+ 5(C1 + C2)
 X3 < 5 (C1 + C2) + 2C4

 -5x3 +z < 11 (CO + 4C1) + (C2 + C3)
 7x3 +z < 15 (CO + 4C3) + 5(C2 + C3)
 2x3 < 3 (C2 + C3)+ C4

 -X3 < O. C5

 It has been shown by Kobler [8] that after n variables have been eliminated any constraint
 that depends on more than n + 1 of the original constraints must be redundant (implied by the
 other constraints). In this case after eliminating 2 variables the 2nd and 4th of the above
 inequalities depend on more than 3 of the original inequalities (both depend on CO, Cl, C2 and
 C3). Therefore Kohler's result allows us to ignore the 2nd and 4th inequalities giving the
 representation:

 Maximise z

 subjectto: -1X3 +Z<21 CO+ C1 + C2
 P3' X3 < 5 C1 + C2 + 2C4

 7X3 +z < 15 CO + 5C2 + 9C3
 2x3 < 3 C2 + C3 + C4

 -X3 <0. C5

 Finally we eliminate X3 between pairs of inequalities where X3 has coefficients of opposite
 sign. Again Kohler's result enables us to ignore the elimination between the 1st and 4th
 constraint. The resultant transformed model is:

 Maximise z

 subject to: z < 43 CO + ilCi + 7C2 + 13C4
 P4 0 < 5 C1 + C2 + 2C4 + C5

 z <338 CO + 8C1 + 3C2 + 13 C3
 z < 15 CO + 5C2 + 9C3 + 7C5
 0 < 3. C2 + C3 + C4 + 2C5

 Clearly the maximum value of z satisfying all these constraints is 38/3. This arises as the
 minimum constant on the right-hand side of the three inequalities involving z. In order to obtain

 the values of the variables xl, x2,.. ., etc., which give rise to the maximum value of z we can
 work backwards as follows.

 The 3rd constraint in P4 is that one which gives z = 38/3. This arises from combining the 1st
 and 3rd constraints in P3'. If z = 38/3 (instead of z < 38/3), then we must have the 1st and 3rd
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 1986] FOURIER'S METHOD OF LINEAR PROGRAMMING AND ITS DUAL 685

 constraints of P3' satisfied as equations. Solving these equations gives X3 = 1/3. These con-
 straints in turn arise from the 1st, 2nd, 3rd and 4th constraints in P2 which when solved as
 equations give X2- 2. Finally the origins of these constraints are CO, Cl, C2, and C3 in P1
 which when solved as equations give xl = 0.

 Alternatively we could observe immediately that constraint z < 38/3 in P4 arises from CO,
 Cl, C2 and C3. If we set z = 38/3, this forces us to treat these constraints as equations, which
 when solved simultaneously give this optimal solution.

 This method gives us much more information that just the specific solution to a specified
 model. The coefficients (multipliers) of CO, Cl, C2 and C3 in the 3rd constraint of P4 are 1, 7/3,
 8/3 and 13/3, since CO in P1 consists of the negated original objective (plus z) this points out
 the obvious result that

 (-X1+ X2 - X3 <2)
 8

 + ?(X1 + X2 + 2X3 < 3)

 +13 ?)

 t 38
 -4x, + 5x2 + 3x3 < -

 These multipliers therefore show 38/3 to be an upper bound for the maximum value of
 -4x1 + 5X2 + 3X3.

 Similarly the multipliers of C1, C2,..., etc., in the other inequalities (the 1st and 4th) in P4
 involving z give (non-strict) upper bounds of 43 and 15, respectively, for the objective.

 Our method has not only provided us with multipliers for the constraints and an upper bound
 for the objective function. It has also provided us with a set of values for the variables for which
 the objective attains the least upper bound derived. This is the main impost of the fa mous Duality
 Theorem of LP which is discussed later.

 The significance of the other inequalities 0 < 5 and 0 < 3, not involving z, in P4 will become
 apparent when we describe the dual of the method above.

 Should an LP model be infeasible the method demonstrates this. The final inequalities will
 contain a contradiction, i.e., a constraint such as

 0 < - 1.

 If a model is unbounded, this will be apparent as in the final inequalities there will be no upper
 limit to the value of z.

 Although we have solved model P for specific values of the right-hand-side coefficients of the
 inequalities, it should be apparent that those values were not used until we derived the maximum
 value of z from P4. Therefore we could, with no extra work, have found the maximum value of z
 as a function of the right-hand-side coefficients. Such a function is known as the value function of
 an LP. If the right-hand-side values of the two constraints (apart from the nonnegativity

 constraints) in P were b, and b2 instead of 2 and 3, the multipliers of CO, Cl, etc., in P4 would
 tell us that the final inequalities would be

 z <11b1 +7b2

 0 < b? + b1

 z < 7 b + b2
 z< 5b1 +9b2
 0 < b2.
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 686 H. P. WILLIAMS [November

 Therefore if b1 + b2 or b2 is negative, the model is infeasible. Otherwise

 z = minimum (lb, + 7b2, b, + - b2, 5.bl + 9b2)

 A geometrical interpretation of the method. The method can be interpreted geometrically. It is
 possible to represent the model P1 in 4-dimensional Euclidean space. A point represents a
 feasible solution if its coordinates give values for the variables which satisfy the constraints. The
 set of feasible solutions can be shown to give a polyhedron in 4 dimensions. For a general model
 with n variables we will have a polyhedron in n dimensions. (The polyhedron may not be
 bounded as in this example.) By eliminating a variable we project the polyhedron down into a
 space of one less dimension. While we cannot visualise a space of 4 dimensions, we can visualise
 the transformed model P2 which has been reduced to 3 variables, and therefore is represented in
 a space of 3 dimensions in Fig. 1(i). By maximising z we are trying to find the highest point in
 this three-dimensional polyhedron. Each of the inequalities in P2 gives rise to a 2-dimensional
 face of the polyhedron. These are the faces ABC, ACED, ABHI, ADFI, FDEG and GECBH. In
 order to visualise the diagram more easily, the coordinates (x2, X3, Z) of the 5 vertices A, B, C,
 D and E are marked. The lines FD, GE, HB and IA are all parallel to the z axis. In this
 example none of the inequalities is redundant. If there were redundant inequalities, these would
 give rise to 2-dimensional planes outside the polyhedron and not therefore forming boundaries.

 z ~~ ~~~~~~A ( 21/3, 1/3,12 2/3)

 13 B ( 21/2, 0,101/2)

 x3~~~~~~~1

 10/ / II

 //DIRECTION OF
 PROJ ECTION

 7

 FIG. l(i)

 The elimination of variable x2 projects this polyhedron down onto the plane (X3, Z) giving the
 model P3 (or P3'). In effect what we are doing by eliminating x2 is shining rays of light parallel
 to the axis x2 in the direction of the (X3, Z) plane. The shadow of the 3-dimensional polyhedron
 on the plane gives the polyhedron associated with P3' represented in Fig. 1(ii). The inequalities in
 P3' (apart from the second) respectively give rise to the lines PQ, PR, RT and QS. Although
 Kohler's observation allowed us to remove some redundant inequalities in P to produce P3', it

 does not remove them all. From Fig. 1(i) it is apparent that the inequality X3 s< 5 is redundant
 (implied by the other inequalities). PQ, PR, RT and QS form the 1-dimensional faces of the
 2-dimensional polyhedron. (In fact} the inequality X3 < 5 is the "shadow" of the line of
 intersection of the extended faces ARHI and EDEG in Fig. 1(i).)

 Finally, eliminating X3, we project the 2-dimensional polyhedron in 1(11) down onto the z axis
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 1986] FOURIER'S MTHOD OF LINEAR PROGRAMMING AND ITS DUAL 687

 to give the 1-dimensional polyhedron in Fig. 1(iii). The 1st (redundant) inequality in P4 gives the
 point z = 43 which is not marked. The 3rd inequality gives the point X and the 4th inequality
 the point Y. Clearly X is the only 0-dimensional face of the 1-dimensional polyhedron and all
 inequalities apart from the 4th are redundant. For completeness we observe that the point z = 43

 is the shadow of the intersection of lines QP and X3 = 5 in Fig. 1(ii). Point Y is the shadow of
 the intersection of the extensions of SQ and PR. The redundant inequality 0 < 5 is the

 "shadow" of the "intersection" of the parallel lines SQ and X3 = 5; similarly 0 < 3 is the
 "shadow" of the "intersection" of RT and SQ.

 DIRECTION OF
 PROJECTION

 15 15 Y (15)
 14- 14
 13 (v3P12 2/) 13 X (12%26)
 12 12

 11 11
 (o, 1o0v2) 10 1 0
 9 9
 8 8

 7 7

 6 6

 45 R (114/2) 4

 3 3
 2 2

 1 1

 0- 1 X3 0
 1 ~~~~~~~~~~~~~~~-1

 -2

 S T

 FIG. 1(fi) FIG. I(iii)

 Having shown that the maximum possible value of z arises from point X in 1(iii), we
 backtrack to the point P in 1(ii) of which X is the shadow giving X3 = 1/3. P is the shadow of
 A in 1(i) giving x2 23. If it were possible to visualise 4 dimensions, A would be the shadow of
 a vertex of the 4-dimensional polyhedron represented by P1.

 Were the original model to be infeasible, it would be represented by an empty polyhedron
 whose projections would clearly be empty. If the model were unbounded, the polyhedron would
 be unbounded in the z-direction which would be revealed in the projection onto the z axis.

 In practice the build-up in inequalities resulting from the elimination of each variable can be

 explosive. If, for example, a variable to be eliminated occurs with a negative coefficient in ml
 inequalities, a positive coefficient in m2 inequalities, and does not occur in the remaining m3
 inequalities, the result of eliminating it will be to produce mlm2 + m3 inequalities. Many of
 these resultant inequalities will be redundant. Although Kohler's observation may allow us to
 remove some of them, the number can still become very large even for quite modest values of ml
 and in2. It is this, potentially explosive, growth in inequalities which makes the method
 computationally impractical for real life models. No efficient method has yet been devised for
 removing all the redundant inequalities generated.

 The dual model. Another illuminating way of looking at the method is to consider the dual
 model. It has already been pointed out that the multipliers of CO, Cl, C2,... , etc., in P4
 demonstrate different ways in which the constraints of P can be added together to give an upper
 bound for the objective function. If we look at the rows of detached coefficients of xl, X2 and X3
 in the constraints Cl, C2,..., we have
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 688 H. P. WILLIAMS [November

 -1 1 -1 C1

 1 1 2 C2

 1 0 0 C3

 0 -1 0 C4

 O O -1 C5

 The multipliers of Cl, C2, .. ., etc., (which will always be nonnegative) in the 1st, 3rd and 4th
 inequalities of P4, give different ways in which these rows can be added together to give the rows
 of detached coefficients of the objective in P i.e.,

 -4 5 3

 If we let the multipliers of Cl, C2,. . ., C5 be yl, y2,. .., y5, we must have

 -Y1 + Y2-Y3 =-4
 Y1 + Y2 Y4 = 5

 -Y1+2Y2 -y5= 3

 The multipliers for the 1st inequality in P4 provide a solution to this set of equations

 Yi =l 1 y2=7 y3 =0, y4 = 13, y5 = .

 The multipliers for the 3rd inequality in P4 provide another solution to the equations

 7 8 13
 Yl Y2 = Y3=3 Y4 -y?-

 The multipliers for the 4th inequality in P4 provide yet another solution to the equations.

 Yi=0, Y2=5, y3=9, y4=0, y5=7.
 What we are seeking are a set of nonnegative multipliers (values for the y variables) which give
 the least upper bound for the objective, in P. In order to do this we wish to

 Minimise 2yi + 3y2.

 where these coefficients 2 and 3 are the values on the right-hand sides of Cl and C2 in P1.

 The problem which we have posed involving variables Yil, y2.. ., etc., is itself an LP model.
 The variables y3, y4 and y5 in the above three equations are sometimes known as surplus
 variables. Since they (like all the variables) cannot take negative values, the three equations above
 can be written as > inequality constraints. If the expression 2yi + 3Y2 is regarded as the new
 objective function, we have the new model in the form:

 Minimise 2yi + 3Y2

 subject to: -Y1 + Y2 > - 4
 D Y? + Y2 > 5

 -yl + 2y2 > 3
 Yl>O, Y2> 0.
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 1986] FOURIER S METHOD OF LINEAR PROGRAMMING AND ITS DUAL 689

 This model D is known as the dual model to the (primal) model P.
 We have already, indirectly, found, by Fourier's method, a solution to D, where the value of

 the objective is equal to the maximum possible value of the objective of P. Since it should now be
 apparent that any solution to D provides an upper bound for the maximum objective of P, the
 solution we have obtained for D must also minimise the objective of D. This, it has already been
 pointed out, is an instance of a general powerful and famous result known as the Duality Theorem
 of LP. To every LP model there corresponds a dual model. If both are solvable (i.e., not infeasible
 or unbounded) the optimal objective values of both are the same. Fourier's method provides a
 clear demonstration of this.

 The dual method. The fact that every LP model has a dual model allows us to convert
 Fourier's method into a dual method. Each of the steps in our original (primal) method applied to
 the original model can be mirrored by steps applied to the dual model. The resultant method is
 also intuitive and has a clear geometrical interpretation.

 In our primal method we combined rows (constraints) together, two at a time, so as to
 eliminate variables (columns) from the model. Ultimately we arrived at nonnegative combina-
 tions of the original rows which gave the objective function. For the dual method we will combine
 columns together, two at a time, so as to eliminate constraints (rows) from the model. Ultimately
 we will arrive at nonnegative combinations of the columns which give the column of right-hand-
 side coefficients of the model. The multipliers in these non-negative linear combinations will
 constitute feasible solutions to the dual model. We seek a feasible solution which minimises the
 dual objective function.

 Just as it was convenient to convert model P into model P1 by representing the objective by a
 variable z, it is convenient in the dual method, applied to model D, to represent the right-hand-side
 constants as coefficients of a new variable yo fixed at value 1. We also, in P1, explicitly included
 the nonnegativity conditions - x1 < 0, etc. The dual correspondence to this is to include the
 surplus variables so making the constraints of D into equations. This gives us the form Dl of the
 model.

 Minimise 2yi + 3Y2

 subject to: 4yo Yy + Y2 -Y3 = 0 Al
 Dl -5Yo +Yi + Y2 -Y4 = 0 A2

 -3yo -yl +2y2 +Y=5O A3
 Yo =1 B

 YlY2I Y3 I Y4,Y5 > 0.

 The parallel between P1 and Dl should be obvious. The coefficients in the four rows of Dl are
 the same as the coefficients in the four columns of P1. The objective coefficients of Dl are the
 same as the right-hand-side coefficients of P1.

 In order to eliminate constraint Al we apply a transformation of variables. New (nonnegative)

 variables ul, u2, U3 and U4 are introduced which are related to the variables yo' Y, .. ., etc., by
 the equations

 4u1 + U3 = Y 4y2 + U4 =y3,

 4u1 +4U2=4y0, U3 +u4=y2.

 When these equations are used to substitute yo, Yl, Y2 and y3 out of the equations in Dl it can
 easily be verified that the equation Al disappears.

 A graphic way of interpreting the row variables has been suggested by Dantzig and Eaves
 [2].This can best be understood through Fig. 2. In equation Al we have a mixture of negative
 quantities (-yi and -y3) and positive quantities (4yo' Y2) which must sum to zero to satisfy the
 equation. 4yo is split up into 4ul and 4u2 (the coefficients of ul and u2 are kept the same as yo
 so as to keep all the coefficients in the transformed equation yo 1 as unity. This is for

This content downloaded from 
��������������87.97.12.88 on Fri, 17 Jun 2022 20:17:17 UTC�������������� 

All use subject to https://about.jstor.org/terms



 690 H. P. WILLIAMS [November

 convenience rather than necessity). Similarly the other quantities in equation Al are split up as
 indicated in Fig. 2. Fig. 2 may be interpreted as a "Transportation Problem." The Transportation
 problem is itself a particularly simple type of the LP model and is described in Dantzig [1].

 4Yo -~--4u (

 ~U3

 ( Y2 ) *> U4 Y3

 FIG. 2

 While visualising the transformed variables in this way gives an interpretation to the new
 variables, it is not necessary for the execution of the dual method. This can be carried out
 mechanically by analogy with the primal method, as will become clear through the example.
 Performing the above substitutions transforms Dl to the model below.

 Minimise 8u1 + 5u3 + 3u4

 subject to: -u1 -5u2 + 2u3 + U4 -y4 = 0 A2
 D2 7u1-3u2 + u3 + 2u4 -Y5 = O A3

 ul + U2 = 1 B

 Ul, U2, U3, U4, Y), )5 > 0.

 It is clear that D2 is the dual of model P2. In this dual method we have removed constraint Al
 whereas in the primal method we removed variable x1.
 Rather than think in terms of transformed variables we can perform the method computa-

 tionally by combining columns in pairs. The column of coefficients for ul in D2 arises as the
 column for yo in Dl added to 4 times the column for Yl. These two columns are combined in
 these multiples in order to eliminate the coefficient of the new variable ul in D2. Similarly the
 columns for the pairs of variables (yo, Y3), (Yl, Y2) and (Y2, y3), each having opposite signs in Al,
 are combined in suitable multiples. The correspondence with the elimination of xl in P1 in the
 primal method should be apparent. It is convenient to remember the origins of each column. This
 may conveniently be done by Table 1 below.

 TABLE 1

 U1 U2 U3 U4 Y4 Y5

 Yo 1 1
 Y1 41
 Y21 1

 Y3 4 1
 Y4 1
 Ys 1

 The elimination of A2 from D2 can be performed similarly by combining columns for the

 pairs (Ul, uU3) (U2a U3), (U3, y4), (U1, U4), (U2, U4) and (U4, y4) in suitable multiples so that the
 resultant coefficients in A2 are all zero. As with the primal method some of these combinations
 can be ignored. If after n constraints have been eliminated a column depends upon more than
 n + 1 of the original columns, it can be shown that it may be ignored. This is the obvious dual of
 Kohler's observation in the primal method. The reason why it is possible to ignore such columns
 is pointed out below. For our example here it means that we need not combine the pairs (U2, U3)

This content downloaded from 
��������������87.97.12.88 on Fri, 17 Jun 2022 20:17:17 UTC�������������� 

All use subject to https://about.jstor.org/terms



 1986] FOURIER S METHOD OF LINEAR PROGRAMMING AND ITS DUAL 691

 and (ul, U4). Both would result in columns depending on yo, Yl, Y2 and y3. The result of
 eliminating constraint A2 is to produce D3' (the dual of P3').

 Minimise 2 v1 + 5V2 + 15V3 + 3v4

 13 v- =0 A subject to: - v + v2 + 7v3+2v4-Y5=0 A3

 D3' vl + V3 = 0 B

 V1, V2, V3, V4, Y5 ?- 0.

 The origins of the columns for the variables are given in Table 2.

 TABLE 2

 V1 V2 V3 V4 Y5

 Yo 1 1
 9

 Y1 - 1

 Y2 2 1 5 1

 Y3 9 1
 Y4 2 1
 Ys 1

 Table 2 can be constructed by combining the columns of Table 1 in the same multiples as the
 columns of D2. For example, the column for v1 in D3' arises from the column for ul in D2
 added to 2 times the column for U3 in D2. Similarly, the column for v1 in Table 2 is the column
 for ul in Table 1 added to 2 times the column for U3 in Table 1. Multiples of columns are chosen
 so as to keep the nonzero coefficients of yo unity in the tables of originating variables.

 Finally, eliminating A3 from D3' produces model D4 and Table 3.

 38 1543W Minimise 43w1 +5w2 + 3 W3 15W4 3w5

 subjectto: wI + W3 + W4 =1 B
 D4

 Wl, W2, W3, W4, W5 > 0.

 TABLE 3

 W1 W2 W3 W4 W5

 Yo 1 1 1

 Y1 11 1 7

 7 1 8 5 1

 Y3 13 9 1
 Y4 13 2 1

 Y5 1 7 2

 The solution of D4 is obvious. We choose that variable from among wl, W3 and W4 which has
 the smallest objective coefficient and set it to 1. Clearly this gives W3 = 1. From Table 3 we see
 the multiples of the original columns of the model DI which give rise to the column for w3 in D4.
 Therefore the ontimal solution to the orininal model is
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 7 8 13
 Yi = 3, Y2 Y3 = 3 Y4Y5=

 given an objective value of 38/3. The coefficient 1 for row YO in Table 3 indicates that we must
 take 1 times the negated column of right-hand-side coefficients for 0 in making up the optimal
 solution.

 It should be obvious that again D4 is the dual model to P4 and contailns the same coefficients

 but these are transposed. The coefficients in Table 3 are the same as the multipliers of the original
 constraints of P given in P4. In the same way that the primal method can provide the optimal
 solution for any right-hand-side coefficient, this dual method gives the optimal solution for any
 objective function. If model D were to have another objective function, then the final transformed

 model D4 would be the same apart from its objective coefficients. In fact, if the objective
 coefficients in D were b1 and b2 instead of 2 and 3, the transformed model D4 would be:

 Minimise (Ilb, + 7b2)wl +(b1 + b2)w2 + (i3bl + j b2)w3 +(5b1 + 9b2)w4 +b2W5

 subjectto: WI +w3 W4

 Wl, W2,W3, W4, W5 > 0.

 If b1 + b2 or b2 is negative, the objective can be made as small as we like and the model is said
 to be unbounded (the primal model was infeasible in these cases); otherwise the minimum value
 of the objective is

 minimum(1lbi + 7b2, 7b1 + 8b2,5b1 -+ 9b2)

 The satisfaction of the duality theorem should again be obvious. The corresponding values of the

 variables Yl, y2, . . , etc., are given in the corresponding column of Table 3. Therefore apart from
 the case of the model D being unbounded there are three possible optimal solutions. They are:

 corresponding to w, l:y, = 11, y = 7, y3 = 0 y4 = 13, y5 0,
 7 8 13

 corresponding to W3= l:yi = , Y2 = Y3 = 3 Y4 Y5 = 0,
 correspondingtow4 =1 :yl = 0, Y2= 5, Y3- 9 Y4 =, Y5 7

 These three solutions are obviously the three sets of multipliers for the constraints on the final
 form of the primal model P4. In the dual model D they are three vertex solutions. Model D is
 represented in Fig. 3. The three constraints of D are represented by the faces CE, AB and BC,
 respectively. AD represents the nonnegativity constraint on Yi- The nonnegativity constraint on

 Y2 is clearly redundant. Different objective functions will give either an unbounded solution or
 one of the three vertex solutions at A, B or C. For example, different values of the objective

 function 2yi + 3Y2 give lines parallel to PQ. By minimising this objective function we move to
 the lowest such line which still intersects the feasible region, in this case at vertex B, giving the
 solution Yi = 7/3, Y2 = 8/3, objective = 38/3 already obtained. The lines AD and CE are
 known as extreme rays. Their existence is demonstrated algebraically by the columns for w2 and

 w5 in Table 3 which have entries of 0 in row yo. For example, we can let w2 take any
 nonnegative value without violating constraint B of D4. This corresponds to keeping y1 and y2
 in the ratio 1:1 (coefficients in Table 3) and fixing y3 at 0 (the constraint represented by CE is
 therefore binding). Clearly the column for w2 in Table 3 corresponds to the extreme ray CE.

 Similarly the column for w5 corresponds to the extreme ray AD.
 We have therefore demonstrated that the dual of Fourier's method generates all vertices and

 extreme rays for the feasible polyhedron of an LP model. This in itself sometimes has practical
 application.
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 It is well known that, for an LP model with m constraints, we can restrict our search for an
 optimal solution to solutions in which at most m variables (including slack and surplus variables)
 are nonzero. This is an algebraic realisation of the geometric observation that the optimal
 solution to an LP (if it exists) lies on the boundary of the polyhedron defined by the feasible
 region. If the optimal solution is unique, it will lie at a vertex, otherwise, in the case of alternate
 optimal solutions, there will still be among these alternatives vertex solutions which are optimal.
 The Simplex Algorithm restricts attention to so-called basic solutions which correspond to vertex
 solutions. This property allows us to justify Kohler's observation when applied to the dual
 method. When we have eliminated n constraints from our original model (D, say) we have in
 effect solved an LP model consisting of the first n constraints. In the optimal solution to such a
 model no more than n of the original variables will be nonzero. Therefore, including our
 right-hand-side column yo as a variable, no more than n + 1 of the original variables will go to
 make up a vertex solution. Hence any derived column depending on more than n + 1 of the
 original variables will correspond to a variable which can be taken as 0 in an optimal solution.
 Hence such a derived column may be ignored. Because of the one-to-one correspondence between
 derived columns in the dual method and derived rows in the primal method, this is a sufficient
 justification for our ignoring certain derived constraints. We did this when they depended on
 more than n + 1 of the original constraints when n constraints had been eliminated (Kohler's
 observation).

 An outline of the history of Fourier's method and its extensions. Fourier's method was
 published 1826. It has been rediscovered a number of times by different authors. Motzkin [12]
 derived a method of solving 2-person zero sum games. Since any LP can be formulated as such a
 game (and vice versa), Motzkin's method gives rise to a method of solving LP models which in
 fact turns out to be Fourier's method. Hence the name Fourier-Motzkin elimination is often used
 for the method. Dantzig [1] refers to the method briefly under this name. Dines [3] also
 rediscovered the method. Langford [10] derived a method of solving a particular problem in
 Mathematical Logic. He showed, by a constructive method, that the Theory of Dense Linear
 Order is decidable. Williams [14] showed that any LP model can be posed within this restricted
 form of arithmetic and that hence the achievability, or otherwise, of a particular objective value
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 can be decided. This application of Langford's method turns out to be the same as Fourier's
 method. Another account of Fourier's method, together with additional references, can be found
 in Duffin [4]. There is also a related article by Kuhn [9].

 Fourier's method (and its dual) is computationally impractical for anything but small models.
 This is because of the large build-up in inequalities (or variables) as variables (or constraints) are
 eliminated. It is, however, possible that the methods could be applied in a restricted form. When
 all variables (apart from the objective variable) have been eliminated, one will only be interested
 in one of the derived inequalities. For the dual method one will only be interested in one of the
 final columns. Unfortunately, it is not clear how to eliminate most of the redundant inequalities
 (or variables) until the end. Williams [18] suggests applying a restricted form of the dual method
 as a " Crashing Procedure" prior to the Simplex Algorithm. Geometrically the Simplex Algorithm
 moves from vertex solution to vertex solution until it reaches the optimal vertex solution. Initially
 (Phase 1 of the Simplex Algorithm) it is necessary to obtain a feasible vertex solution. In practice
 this usually takes as much time as the second phase. For model D represented in Fig. 3 the
 Simplex Algorithm would start at the origin 0 and systematically move to a vertex (such as A)
 before proceeding to the optimal vertex at B. By applying a restricted form of the dual method
 one would hope to obtain a good vertex solution as a starting point.

 Computational implementations of the methods using efficient data structures are possible. It
 is sensible to take account of the sparseness of most LP models (most coefficients in a model are
 usually zero) in both storing and manipulating the matrices. The transformations which eliminate
 variables or constraints can be represented by elementary matrices which probably gives a sparser
 representation than explicitly transforming the whole model. Such considerations are, however,
 beyond the scope of this paper.

 There is a lot of interest, in view of its wide applicability, in an extension of LP known as
 Integer Programming (IP). Here some, or all, of the variables in a model are restricted to take
 integer values. Such models are much more difficult to solve than LPs. It has been shown by Lee
 [11] and Williams [15] how Fourier's method can be extended to allow us to eliminate integer
 variables. In order to do this it is necessary to introduce disjunctions of inequalities as well as
 congruence relations into the transformed model. The dual method can also be extended to deal
 with IP models by introducing congruence relations as is done by Williams [17].

 Acknowledgement. The author would like to acknowledge the help of Mr. Robin E. Day of Edinburgh

 University who wrote a sophisticated computer program to perform the dual method.
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 MUSICAL SCALES AND THE GENERALIZED CIRCLE OF FIFTHS

 JOHN CLOUGH

 Department of Music, SUNY at Buffalo, Amherst, NY 14260

 GERALD MYERSON

 Department of Mathematics, The University of Texas at Austin, Austin, TX 78712

 This paper deals with the way the diatonic set (the white keys on the piano) is embedded in the

 chromatic scale (all the keys on the piano). To illustrate the problem, consider the chords CDF

 and EFA (the reader who happens to be temporarily without piano may find Fig. 1 helpful). If we
 ignore the black keys, these chords have the same structure; the second note is one key higher

 than the first, and the third note is two keys higher than the second. When actually played on the
 piano, the chords sound quite different, due to the embedding of the diatonic in the chromatic.

 From C to D is two semitones (a semitone is the distance between adjacent notes in the

 chromatic scale), and from D to F is three, whereas E to F is one and F to A is four. The problem

 .C D E F G AB C ...

 FIG. 1. Piano keyboard.

 John Clough: Before coming to SUNY at Buffalo, I taught at the Oberlin College Conservatory of Music and in
 the School of Music at the University of Michigan. At all three places I have enjoyed the colleagueship of
 mathematicians who were willing to help me work through various problems in the application of mathematics to
 music: Edward Wong and Samuel Goldberg at Oberlin, Bernard Galler at Michigan, John Myhill and Gerald
 Myerson at Buffalo. Though trained only as a musician, in occasional flights of fancy I consider a second career in

 my first love-mathematics.

 Gerald Myerson: I received my Ph.D. in Mathematics under the direction of Don Lewis at the University of
 Michigan in 1977. I have been on the faculty at the University of Buffalo, the University of British Columbia, and
 the University of Texas. I play two musical instruments: the phonograph and the cassette deck.
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