## Exercises

## 1 Systems of linear equations and inequalities

Exercise 1.1 Find the set of solutions of the following systems of linear equations.
(a)

$$
\left.\begin{array}{rl}
x_{1}+2 x_{2}-4 x_{3} & =-2 \\
-2 x_{1}+3 x_{2}+x_{3}+x_{4} & =3 \\
5 x_{2}-3 x_{3}+x_{4} & =1 \\
x_{1}+x_{2}+3 x_{4} & =-2 \\
11 x_{2}-6 x_{3}+5 x_{4} & =0
\end{array}\right\}
$$

(b)

$$
\begin{aligned}
x_{1}+3 x_{3}-2 x_{4} & =-1 \\
-x_{1}+2 x_{2}+5 x_{3}+x_{4} & =-5 \\
2 x_{1}+3 x_{2}+4 x_{4} & =7 \\
x_{2}+x_{3}-3 x_{4} & =0 \\
2 x_{1}+6 x_{2}+9 x_{3} & =1
\end{aligned}
$$

(c)

$$
\begin{aligned}
-x_{1}+3 x_{2}+4 x_{3} & =2 \\
2 x_{1}+2 x_{2}+x_{3}-1 x_{4} & =2 \\
-x_{1}+3 x_{3}+2 x_{4} & =-1 \\
5 x_{2}+8 x_{3}+x_{4} & =5 \\
2 x_{2}+7 x_{3}+3 x_{4} & =0
\end{aligned}
$$

(d)

$$
\left.\begin{array}{r}
-2 x_{2}+3 x_{3}+3 x_{4}=4 \\
x_{1}+4 x_{2}-x_{3}=3 \\
2 x_{1}-2 x_{2}+4 x_{3}+x_{4}=3 \\
-x_{1}+2 x_{2}+x_{3}+5 x_{4}=8 \\
-12 x_{2}+9 x_{3}+4 x_{4}=1
\end{array}\right\}
$$

(e)

$$
\begin{aligned}
-x_{1}-x_{2}+3 x_{3}+x_{5} & =1 \\
x_{2}+x_{3}+2 x_{4}-3 x_{5} & =-2 \\
4 x_{1}-2 x_{3}+2 x_{4}+x_{5} & =-2 \\
x_{1}-2 x_{2}+8 x_{3}+4 x_{4}+x_{5} & =-1 \\
3 x_{1}-2 x_{2}+5 x_{5} & =1
\end{aligned}
$$

(f)

$$
\left.\begin{array}{rl}
x_{1}+2 x_{2}-3 x_{4}+x_{5} & =1 \\
2 x_{1}+5 x_{2}-x_{3}+x_{4} & =-8 \\
-3 x_{1}-8 x_{2}+2 x_{3}-5 x_{4}+x_{5} & =17 \\
5 x_{1}+11 x_{2}-x_{3}-8 x_{4}+3 x_{5} & =-5 \\
-x_{2}+x_{3}-7 x_{4}+2 x_{5} & =10
\end{array}\right\}
$$

Exercise 1.2 Find the set of solutions of the following systems of linear inequalities with help of graphical solution method.
(a)

$$
\left.\begin{array}{r}
2 x+y \leq 4 \\
-x+y \leq 1 \\
-3 x+y \leq 5 \\
-x-2 y \leq 4 \\
x-2 y \leq 4 \\
x \leq 2
\end{array}\right\}
$$

(b)

$$
\left.\begin{array}{rl}
2 x-5 y & \leq 10 \\
x+y & \leq 5 \\
-x+4 y & \leq 8 \\
x+3 y & \leq 9 \\
y & \leq 4
\end{array}\right\}
$$

(c)

$$
\left.\begin{array}{rl}
-x+y & \leq 0 \\
5 x+3 y & \leq 6 \\
x+5 y & \leq 13 \\
-2 x+5 y & \leq 4 \\
-x+6 y & \leq-6
\end{array}\right\}
$$

(d)

$$
\left.\begin{array}{rl}
-x+y & \leq 1 \\
-x+2 y & \leq 6 \\
-2 x+y & \leq 5 \\
-x-y & \leq 0 \\
-5 x-y & \leq-4
\end{array}\right\}
$$

(e)

$$
\begin{aligned}
x+2 y & \leq 12 \\
x+3 y & \leq 12 \\
y & \leq 5 \\
2 x-3 y & \leq-4 \\
x-4 y & \leq 0 \\
x & \leq 4
\end{aligned}
$$

(f)

$$
\left.\begin{array}{rl}
x-4 y & \leq 3 \\
2 x-3 y & \leq-3 \\
2 x-y & \leq-1 \\
6 x-y & \leq 11 \\
x & \leq 2
\end{array}\right\}
$$

(g)

$$
\left.\begin{array}{rl}
-x+3 y & \leq 8 \\
x+6 y & \leq 36 \\
-x-y & \leq-2 \\
5 x-y & \leq 16 \\
-y & \leq 0 \\
-x & \leq 1
\end{array}\right\}
$$

(h)

$$
\left.\begin{array}{rl}
x+3 y & \leq 5 \\
-2 x-y & \leq-5 \\
4 x-3 y & \leq 5 \\
-3 x-y & \leq 6 \\
x-5 y & \leq 8
\end{array}\right\}
$$

(i)

$$
\left.\begin{array}{rl}
-x+4 y & \leq 5 \\
-3 x-2 y & \leq 1 \\
2 x-3 y & \leq 4 \\
2 x-y & \leq-3 \\
y & \leq 2
\end{array}\right\}
$$

(j)

$$
\left.\begin{array}{rl}
-3 x+5 y & \leq-9 \\
4 x+y & \leq 11 \\
2 x-y & \leq-1 \\
-2 x-3 y & \leq-3 \\
-4 x-9 y & \leq 3
\end{array}\right\}
$$

Exercise 1.3 Find the set of solutions of the following systems of linear inequalities with help of Fourier-Motzkin elimination.
(a)

$$
\left.\begin{array}{rl}
3 x_{1}-2 x_{2}+x_{3} & \leq 4 \\
-x_{1}+4 x_{2}+2 x_{3} & \leq 1 \\
5 x_{2}+4 x_{3} & \leq 3 \\
x_{1}-3 x_{3} & \leq 2 \\
2 x_{1}-x_{2} & \leq 1
\end{array}\right\}
$$

(b)

$$
\left.\begin{array}{rl}
12 x_{1}+20 x_{2}+15 x_{3} & \leq 60 \\
-3 x_{1}-5 x_{2}-7 x_{3} & \leq-15 \\
-5 x_{1}-4 x_{2}-3 x_{3} & \leq-12 \\
-4 x_{1}-13 x_{2}-5 x_{3} & \leq-22
\end{array}\right\}
$$

(c)

$$
\left.\begin{array}{rl}
-2 x_{1}+x_{2}+4 x_{3} & \leq 1 \\
3 x_{2}+x_{3} & \leq 4 \\
3 x_{1}+2 x_{2}-6 x_{3} & \leq 12 \\
-x_{1}+2 x_{2}-x_{3} & \leq 3
\end{array}\right\}
$$

(d)

$$
\begin{aligned}
-2 x_{1}-8 x_{2}+9 x_{3} & \leq 20 \\
2 x_{1}+x_{3} & \leq 4 \\
x_{1}+3 x_{2}-4 x_{3} & \leq-7 \\
-2 x_{1}+6 x_{2}-5 x_{3} & \leq-22 \\
3 x_{1}-x_{2} & \leq 9
\end{aligned}
$$

(e)

$$
\begin{aligned}
-x_{3}+3 x_{4} & \leq 10 \\
2 x_{3}+x_{4} & \leq 8 \\
x_{3}-x_{4} & \leq 1 \\
-3 x_{3}-2 x_{4} & \leq-3 \\
-x_{1}-2 x_{2} & \leq-9 \\
-7 x_{1}+3 x_{2} & \leq-29 \\
9 x_{1}+x_{2} & \leq 64
\end{aligned}
$$

## 2 Computed tomography

Exercise 2.1 Let $R=[a, b] \times[c, d]$ be the picture region with an $m \times n$ uniform partition. Calculate the line integral of the simple phantom defined by the matrix $A$ along the line $l$ which is parallel to the vector $\underline{v}$ and passes through the point $P$.
(a) $R=[1,5] \times[2,5], m=3, n=4$,

$$
A=\left(\begin{array}{cccc}
1 & 0 & \frac{1}{2} & \frac{3}{4} \\
\frac{1}{4} & 1 & 0 & 0 \\
0 & \frac{1}{2} & 1 & \frac{1}{2}
\end{array}\right)
$$

and $\underline{v}=(3,1), P=(0,3)$.
(b) $R=[-1,3] \times[3,6], m=3, n=4$,

$$
A=\left(\begin{array}{cccc}
0 & \frac{1}{3} & \frac{1}{6} & 1 \\
1 & 0 & \frac{2}{3} & \frac{5}{6} \\
\frac{1}{3} & 1 & 1 & 0
\end{array}\right)
$$

and $\underline{v}=(1,4), P=(0,4)$.
(c) $R=[3,6] \times[1,5], m=4, n=3$,

$$
A=\left(\begin{array}{cccc}
\frac{1}{2} & \frac{2}{3} & 1 & 0 \\
0 & \frac{1}{6} & 1 & \frac{5}{6} \\
0 & 1 & \frac{1}{2} & \frac{1}{3}
\end{array}\right)
$$

and $\underline{v}=(1,-2), P=(4,4)$.
(d) $R=[2,6] \times[-1,3], m=4, n=4$,

$$
A=\left(\begin{array}{cccc}
\frac{1}{3} & \frac{5}{6} & 0 & \frac{1}{12} \\
1 & \frac{2}{3} & \frac{1}{6} & 0 \\
\frac{1}{2} & 0 & 1 & \frac{5}{12}
\end{array}\right)
$$

and $\underline{v}=(-3,1), P=\left(2, \frac{3}{2}\right)$.
Exercise 2.2 Let $R=[0,4] \times[0,3]$ be the picture region with an $m \times n$ uniform partition, where $m=3$ and $n=4$. Consider the following line set:

- The lines $l_{1}, l_{2}, l_{3}$ are parallel to the vector $\underline{v}_{1}=(1,0)$ and passing through the points $P_{1,1}=\left(0, \frac{5}{2}\right), P_{1,2}=\left(0, \frac{3}{2}\right), P_{1,3}=\left(0, \frac{1}{2}\right)$ respectively.
- The lines $l_{4}, l_{5}, l_{6}, l_{7}, l_{8}, l_{9}$ are parallel to the vector $\underline{v}_{2}=(1,1)$ and passing through the points $P_{2,1}=(0,2), P_{2,2}=(0,1), P_{2,3}=(0,0)$, $P_{2,4}=(0,-1), P_{2,5}=(0,-2), P_{2,6}=(0,-3)$ respectively.
- The lines $l_{10}, l_{11}, l_{12}, l_{13}, l_{14}, l_{15}$ are parallel to the vector $\underline{v}_{3}=(1,-1)$ and passing through the points $P_{3,1}=(0,6), P_{3,2}=(0,5), P_{3,3}=(0,4)$, $P_{3,4}=(0,3), P_{3,5}=(0,2), P_{3,6}=(0,1)$ respectively.

The line integrals of an unknown function $f$ along lines $l_{k}$ for $k=1,2, \ldots, 15$ are

$$
\begin{array}{lllll}
m_{1}=3, & m_{2}=2, & m_{3}=2, & & \\
m_{4}=\sqrt{2}, & m_{5}=0, & m_{6}=2 \sqrt{2}, & m_{7}=3 \sqrt{2}, & m_{8}=0 \\
m_{10}=\sqrt{2}, & m_{11}=\sqrt{2}, & m_{12}=2 \sqrt{2}, & m_{13}=2 \sqrt{2}, & m_{14}=\sqrt{2}, \\
m_{9}=\sqrt{2}, \\
m_{15}=0 .
\end{array}
$$

(a) Find all the possible values $x_{i, j}$, such that the function $g$, which takes the constant value $x_{i, j}$ on the pixel $R_{i, j}$ for all $i=1,2,3$ and $j=1,2,3,4$, has the line integrals along the lines $l_{k}$ equal to $m_{k}$ for all $k=1,2, \ldots 15$.
(b) Which are the non-negative solutions?
(c) Find the non-negative solutions whose values are not larger than 1.
(d) Which are the binary solutions?

Exercise 2.3 Let $R=[0,4] \times[0,3]$ be the picture region with an $m \times n$ uniform partition, where $m=3$ and $n=4$. Consider the following line set:

- The lines $l_{1}, l_{2}, l_{3}, l_{4}$ are parallel to the vector $\underline{v}_{1}=(0,1)$ and passing through the points $P_{1,1}=\left(\frac{1}{2}, 0\right), P_{1,2}=\left(\frac{3}{2}, 0\right), P_{1,3}=\left(\frac{5}{2}, 0\right), P_{1,4}=$ $\left(\frac{7}{2}, 0\right)$ respectively.
- The lines $l_{5}, l_{6}, l_{7}, l_{8}, l_{9}$ are parallel to the vector $\underline{v}_{2}=(1,2)$ and passing through the points $P_{2,1}=(-1,0), P_{2,2}=(0,0), P_{2,3}=(1,0), P_{2,4}=$ $(2,0), P_{2,5}=(3,0)$ respectively.
- The lines $l_{10}, l_{11}, l_{12}, l_{13}$ are parallel to the vector $\underline{v}_{3}=(2,1)$ and passing through the points $P_{3,1}=(0,2), P_{3,2}=(0,1), P_{3,3}=(0,0)$, $P_{3,4}=(0,-1)$ respectively.

The line integrals of an unknown function $f$ along lines $l_{k}$ for $k=1,2, \ldots, 13$ are

$$
\begin{array}{llll}
m_{1}=1, & m_{2}=2, & m_{3}=1, & m_{4}=2, \\
m_{5}=0, & m_{6}=\sqrt{5}, & m_{7}=\frac{\sqrt{5}}{2}, & m_{8}=\frac{\sqrt{5}}{2}, \quad m_{9}=\sqrt{5}, \\
m_{10}=\frac{\sqrt{5}}{2} & m_{11}=\frac{\sqrt{5}}{2}, & m_{12}=\frac{3 \sqrt{5}}{2}, & m_{13}=\frac{\sqrt{5}}{2} .
\end{array}
$$

(a) Find all the possible values $x_{i, j}$, such that the function $g$, which takes the constant value $x_{i, j}$ on the pixel $R_{i, j}$ for all $i=1,2,3$ and $j=1,2,3,4$, has the line integrals along the lines $l_{k}$ equal to $m_{k}$ for all $k=1,2, \ldots 13$.
(b) Which are the non-negative solutions?
(c) Find the non-negative solutions whose values are not larger than 1.
(d) Which are the binary solutions?

## 3 Discrete tomography

Exercise 3.1 Is there a binary matrix of size $6 \times 5$ with the row sum vector $R$ and column sum vector $S$ ? If yes find such matrix. Is the solution unique? If no, then give another matrix with same row sum vector and column sum vector.
(a) $R=(4,4,2,0,3,5), S=(1,2,5,7,3)$.
(b) $R=(2,3,5,0,3,5), S=(3,2,5,4,3)$.
(c) $R=(4,1,2,4,3,1), S=(1,5,4,5,0)$.
(d) $R=(0,2,4,3,3,1), S=(4,3,1,2,3)$.
(e) $R=(4,2,3,3,1,1), S=(1,6,3,0,4)$.
(f) $R=(2,2,5,3,4,0), S=(5,4,4,3,0)$.

