Chapter 1

Discrete Tomography:
A Historical Overview

Attila Kuba!
Gabor T. Herman?

ABSTRACT In this chapter we introduce the topic of discrete tomography
and give a brief historical survey of the relevant contributions. After dis-
cussing the nature of the basic theoretical problems (those of consistency,
uniqueness, and reconstruction) that arise in discrete tomography, we give
the details of the classical special case (namely, two-dimensional discrete
sets — i.e., binary matrices — and two orthogonal projections) including
a polynomial time reconstruction algorithm. We conclude the chapter with
a summary of some of the applications of discrete tomography.

1.1 Introduction

We assume that there is a domain, which may itself be discrete (such as a
set of ordered pairs of integers) or continuous (such as Euclidean space).
We further assume that there is an unknown function f whose range is
known to be a given discrete set (usually of real numbers). The problems
of discrete tomography, as we perceive the field, have to do with determining
f (perhaps only partially, perhaps only approximately) from weighted sums
over subsets of its domain in the discrete case and from weighted integrals
over subspaces of its domain in the continuous case. In many applications
these sums or integrals may be known only approximately. From this point
of view, the most essential aspect of discrete tomography is that knowing
the discrete range of f may allow us to determine its value at points where
without this knowledge it could not be determined. Discrete tomography
is full of mathematically fascinating questions and it has many interesting
applications. The name discrete tomography is due to Larry Shepp, who
organized the first meeting devoted to the topic (in 1994).
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4 Attila Kuba, Gabor T. Herman

The reconstruction algorithms used in CT (computerized tomography,
see, e.g., [1]) are derived from the not discrete (let us say, general) tomog-
raphy model in which the range of f is the real numbers. Such reconstruc-
tion algorithms are unlikely to be appropriate for discrete tomography. For
example, when using such an algorithm we cannot expect to produce a
two-valued function, not even in the case when the data are taken from a
two-valued f.

Since discrete functions can be considered to be special cases of general
functions, discrete tomography (DT) can be thought of as a special kind
of CT: it seems natural to apply the results of CT to discrete functions.
However, it turns out that DT needs its own theory to answer questions
concerning consistency, existence and uniqueness. Another reason for in-
vestigating special discrete reconstruction methods is that, since f is dis-
crete, there is hope that it can be determined from less data than what
are necessary for general functions. Accordingly, in DT the typical number
of projections (a projection is a collection of line sums or line integrals for
a set of lines which are either all parallel to each other or diverge from a
single point) is two to four, which is much less than what is typically used
in CT (a few hundred). General CT reconstruction methods cannot be used
effectively if the number of projections is so small.

DT has its own mathematical theory based mostly on discrete mathe-
matics. It has strong connections with combinatorics and geometry. In the
rest of this section we give a brief discussion of the connections of DT to
other fields of mathematics. The only intent of this discussion is to set DT
into its mathematical historical context; for this reason we will use terms
here without carefully defining them. The sections that follow are oriented
more toward the specific material in this book; in those sections we will be
careful to define all terms that form part of the discussion. (Some of these
terms will already appear in the current section, but even in such cases we
postpone the definitions until the following sections.)

DT has connections to the analysis of functions. Lorentz gave in 1949 [2]
a necessary and sufficient condition for a function-pair to be the projections
of a planar measurable set. This condition can be considered as the first
consistency result of DT. He also found a condition on two orthogonal
projections of a measurable set by which one can determine if there is no
other measurable set with the same projections. He also showed that for
any integer n there are always two different bounded sets which have the
same n projections. For related results see the works of Rényi (3], Heppes (4]
and Kellerer [5-7].

Many problems of DT were first discussed as combinatorial problems dur-
ing the late 1950s and early 1960s. In 1957 Ryser [8] published a necessary
and sufficient consistency condition for a pair of integral vectors being the
row and column sum vectors of a (0,1)-matrix. (It is interesting that this
consistency theorem is the same as Lorentz’s result [2] specialized to the
case of (0,1)-matrices. The connection between the general and discrete

abris.nagy @science.unideb.hu



1. Discrete Tomography: A Historical Overview 5

cases is discussed in Chapter 5 by Kaneko and Huang in this book.) By
giving a constructive proof of his theorem, Ryser provided the first recon-
struction algorithm. He also recognized that the so-called interchange is
the elementary operation by which any two (0,1)-matrices can be trans-
formed into each other if they have the same row and column sums. In the
same year Gale [9] proved the same consistency condition as Ryser, but
applying it to flows in networks. In 1960 Ryser introduced the concept of
the structure matriz [10], which is useful, for example, in leading to a new
consistency condition [11, p. 82].

The discussion of the geometric connections of DT was started by Ham-
mer (although it was foreshadowed by Jakob Steiner [12] in the 19th cen-
tury), who in 1961 at the AMS Symposium on Convexity [13] raised the
problem: when is a planar convex body uniquely determined from its projec-
tions? For projections along parallel lines, an answer is due to Giering [14],
who proved that for any planar convex body there exist three projections
which uniquely determine it. Gardner and McMullen [15] proved that it
is possible to find four projections that will uniquely determine all pla-
nar convex bodies. (As a summary of the geometric results connected with
tomography we can suggest the excellent book written by Gardner [16].)
Although these results of convex geometry or, more exactly, geometric to-
mography, are about the reconstruction of convex bodies, there are corre-
sponding results for discrete sets. For example, Lorentz [2] gave a method to
construct, for any finite number of directions, distinct discrete sets having
the same projections along these directions. That is, a finite number of pro-
jections are not generally sufficient to reconstruct discrete sets. However,
if the number of points in the discrete set to be reconstructed is known,
it is possible to find finitely many projections that will guarantee unique-
ness [3,17]. A discrete analogue of Gardner and McMullen’s theorem was
obtained by Gardner and Gritzmann [18], who showed that convex lattice
sets in Z2 (Z? denotes the set of d-dimensional vectors of integers) are
determined by certain prescribed sets of four lattice directions.

The interest in DT is well illustrated by the fact that since September
19, 1994, when the first meeting of the topic was held at DIMACS, Rut-
gers University, a five-day seminar [19] was held in Dagstuhl, Germany
in January 1997, a Discrete Tomography Workshop was held in Szeged,
Hungary, in August 1997 (some of its lectures were published in a Special
Issue of the International Journal of Imaging Systems and Technology [20]),
and a workshop of Discrete Tomography and Related Problems has been
scheduled for 1999 in Chateau de Volkrange, France.

In the rest of this introductory chapter we roughly follow the structure
of the book. In the first section we discuss the theoretical results of dis-
crete tomography related to three basic problems: consistency, uniqueness
and reconstruction. After discussing general theoretical results, the special
case of reconstructing two-dimensional discrete sets (i.e., binary matrices)
from two projections is presented. The problems of consistency, uniqueness
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6 Attila Kuba, Gabor T. Herman

and reconstruction are discussed again because the results are much more
powerful than in the general case of more than two projections. The appli-
cations of DT is the topic of the last section.

Discrete tomography is a relative young and actively studied field. It is
therefore inevitable that its terminology has not as yet settled down. This
is reflected in our book: the same concepts are given different names by
the authors of the various chapters and each chapter introduces its own
specific notation. The editors decided that they should not interfere with
this aspect of the chapters, not only because they were too lazy to do so,
but also because this way the readers are introduced to the full range of
terminology and notation in the DT literature. This introductory chapter
will have its own definitional and notational quirks, but some (by no means
exhaustive) hints will be given to alternatives used below in the book.

1.2 Foundations and algorithms

1.2.1 Definitions, notations, and basic problems

In this subsection we are working in d-dimensional Euclidean space. In
such a space a lattice is defined as the set of all linear combinations with
integer coefficients of a fixed set of d linearly independent vectors. Since
any such lattice is isomorphic to the integer lattice Z¢ under a nonsingular
linear transformation, in DT it is enough to study the case of the integer
lattice Z?. We will be doing this for the rest of this chapter without further
comment.

The finite subsets of Z¢ will be called lattice sets or discrete sets. The so-
called lattice directions are represented by any nonzero vectors of Z%. We are
going to use a set of distinct lattice directions, D = (M, ... ,0@) ¢>2
(here distinct means that there are no two vectors in D which are parallel
to each other). We say that a line £ in d-dimensional Euclidean space is a
lattice line if it is parallel to a vector v(¥) € D and passes through at least
one point in Z%. Let £(¥) denote the set of all lattice lines that are parallel
to v®) € D.

Definition 1.1. Let F C Z% be a lattice set. Its projection in direction v(*)
1s defined as the function P}k) : L% 5 Ny (the set of nonnegative integers) by

PR@O =Fne =Y f(z) (L1)

z€L

where f denotes the characteristic function of the discrete set F'.
Unfortunately, there is no uniform terminology. There are authors using

the names X-ray, marginal or line sum for this concept. For example, the
notion of lattice directions is closely related to the notion of fundamental
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1. Discrete Tomography: A Historical Overview 7

direction vectors in Chapter 3 by Kong and Herman in this book, but there
is a subtle, but important, difference in the definition of a lattice line above
and of a grid line in that chapter.

Let D = (v(V,...,v(9) be a set of distinct lattice directions. We say
that two discrete sets F' and F' are tomographically equivalent with respect
to the directions D if ’PI(,k) = 'ng) for k = 1,...,q. Let £ be a class of
finite sets in Z<. In our terminology the discrete set F' € & is determined by
the projections parallel to D in the class £ if there is no tomographically
equivalent other set with respect to the directions D in the class £.

Let £ be a class of finite sets in Z¢ and D be a set of directions in
Z4. Let, furthermore, £ = (£, ..., £®) (g > 2) be the collection of the
sets of lattice lines determined by D. We now introduce the problems of
consistency, uniqueness and reconstruction for £ and L.

CONSISTENCY(E, £).
Given: For k = 1,...,q, a function p®® : £L*) — Ny with finite
support.

Question: Does there exist an F' € £ such that P}k) =p® for k =
1,...,q?7

For a discussion of this problem see Chapter 4 by Gardner and Gritz-
mann in this book. A basic result there is that CONSISTENCY(E, £) is NP-
complete for ¢ > 3. In the case of ¢ = 2, which is discussed in detail
in Subsection 1.2.2, the problem of CONSISTENCY(E, L) can be solved in
polynomial time.

UNIQUENESS(E, £).
Given: An F € £.

Question: Does there exist a different F' € £ such that F and F' are
tomographically equivalent with respect to the directions
of D?

Three chapters of this book discuss UNIQUENESS(E, £). As an introduc-
tion to the problem of uniqueness and its connection with computational
complexity see Chapter 4 by Gardner and Gritzmann. Special aspects of
uniqueness are discussed in Chapter 2 by Fishburn and Shepp. They show
that the additivity of the lattice sets, which is necessary and sufficient for
the uniqueness in the case of ¢ = 2, is sufficient but not necessary if ¢ > 3
(independently from the dimension of the lattice). Kong and Herman prove
in Chapter 3 that in the case of ¢ > 3 the uniqueness of a discrete set cannot
be decided simply by finding certain patterns of 0’s and 1’s in the discrete
space. As it is known from Ryser [8], the situation is just the opposite if
q = 2, because then the existence of a certain type of 2 x 2 submatrix
is equivalent to nonuniqueness. It is interesting that all of these chapters
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8 Attila Kuba, Gabor T. Herman

express clearly that the uniqueness of discrete sets from two projections is
basically different from the case when there are more than two projections.

RECONSTRUCTION(, £).
Given: For k = 1,...,q, a function p*) : £(®) — Ny with finite
support.

Task: Construct a finite set F' € £ such that PI(,,k) = p*) for
k=1,...,q.

Suppose that there are given functions p®) : £(¥) — Ny having finite
supports with cardinalities my for k = 1,...,q. Let M = m; + .-+ + my.
It is clear that if F is a finite set having projections p(),...,p@ in the
directions v(1), ..., v(9, respectively, then F C G, where G consists of
lattice points z € Z4 for which p(¥) (£) > 0, where £ is the lattice line passing
through z in direction v(¥), for each k = 1, ..., q. Because the function p(¥)
has finite support, k = 1,...,q, G is also finite, |G| = N (say). Then the
discrete reconstruction problem can be reformulated as the following linear
feasibility problem:

find Pzr=b, suchthat ze€{0,1}V, (1.2)

where P € {0,1}M*N b € NM. The matrix P describes the geometric
relation between the points of G and the lattice line ¢; that is, it specifies
which points of G are on a line £. Each equation in (1.2) corresponds to a line
sum on a lattice line. The vector = represents the set G. The nonnegative

integral vector b contains the values of the functions p®, k=1,...,q (see
Fig. 1.1).
2 Ty T2 = 2
) T3 +I4 = 2
z5 +x¢ = 1
1 T +z3 +z5 = 2
2 3 To 44 +zrg = 3

FIGURE 1.1. A lattice set of Z2, its projections in the directions (1,0)
and (0,1), and the corresponding linear equation system.

In order to find a solution of the equation system in (1.2) (without the
binary constrain z € {0,1}") some of the iterative CT reconstruction algo-
rithms (such as ART [21] or its versions [22]) can be used. Of course, they
would give a not necessarily binary solution. However, they can be modi-
fied in order to get a binary solution. Such a binary ART, called BART,
was suggested by Herman [23]. Recently this idea has been developed to a
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1. Discrete Tomography: A Historical Overview 9

binary steering schema (see Chapter 12 by Censor and Matej in this book)
by which an iterative general CT reconstruction algorithm can be steered
toward a binary solution. Yagle shows in Chapter 11 of this book how the
equation system and also the integrality constraint of (1.2) can be included
into a quadratic equation system and solved by algebraic methods.

Alternatively, one can transform (1.2) into the linear programming
problem

N
maximize |ij|, subject to Pz =b and x€{0,1}Y, (1.3)
i=1

or, by relaxing the integrality constraint in (1.2) to the interval constraint
0<zj<1lforj=1,...,N,into

N
maximize IijL subject to Pz =5, and z€[0,1]N. (1.4)
j=1

These linear programming problems can be solved by the simplex method
or by using interior point methods [24].

Another reconstruction method can be deduced by the following ap-
proach [25]. After normalizing the equations in (1.2) the EM algorithm
can be applied to minimize the nonlinear Kullback-Leibler information
divergence criterion. For details, see Chapter 13 by Vardi and Zhang in
this book.

If the number of projections is small, the system of linear equations
in (1.2) is very undetermined and the number of solutions can be very
large. In this case we can try to find only the solution(s) having some a
priori property. This property can be given, for example, as a statistical
property such as that the image to be reconstructed should have a high
probability in a certain distribution. In Chapter 8 by Matej et al. in this
book, a Metropolis algorithm is described for reconstructing discrete sets
on a hexagonal grid from their three projections, when the probability of
the occurrence of a discrete set follows some Gibbs distribution. The most
probable solution is approached by iterative steps.

In DT we can reconstruct discrete sets of points where the points can
have different weights; that is, the function to be reconstructed can have
values other than 0 or 1. As it is shown in Chapter 6 by Kuba in this book,
if the number of the possible values of these weights is two, then the binary
reconstruction methods can be applied even if these two values are not
known in advance (see also [26] about two-valued matrices). In the general
case of multi-valued discrete images statistical methods, such as Bayesian
maximum a posteriory (MAP) estimation, can be applied (see Chapter 10
by Frese, Bouman and Sauer in this book).

abris.nagy @science.unideb.hu
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Another way of reconstructing discrete images is to use some CT method
in the first step and then to postprocess the images using some assumed
property. Such a method is described in Chapter 9 by Chan, Herman and
Levitan in this book.

It is also possible to reconstruct parametrized objects such as polygons
from a few (and noisy) projections. In this case the reconstruction can be
considered as a parameter estimation problem, where the discrete set of
the vertices of the polygon need to be recovered. The nonlinear problem
can be solved by some optimization technique (e.g., maximum likelihood).
Such a reconstruction method was suggested by Rossi and Willsky [27].
For the reconstruction of polyhedral shapes another method is presented
in Chapter 14 by Muhammad-Djafari and Soussen in this book.

If the projections of the discrete object are defined not only on straight
lines but on any path between the source and the detector, then we have
the more complicated model of diffuse tomography [28]. A recursive algo-
rithm for diffuse planar tomography is described in Chapter 20 by Patch
in this book.

1.2.2  Reconstruction of binary matrices from two projections

In this subsection we consider the classical special case of m x n binary
matrices and two projections corresponding to row and column sums. We
start with a discussion of the problem of consistency.

Definition 1.2. Let R = (r1,...,7m) and S = (s1,...,5,) be nonnegative
integral vectors. The class of all binary matrices A = (ai;) satisfying the equations

n

Zaij=7‘i, i=1,...,m, (1.5)
i=1

Y ai=s;, j=1,...,n, (1.6)
=1

is denoted by A(R,S). The vectors R and S are called the row and column sum
vectors of any matriz A € A(R, S).

Definition 1.3. A pair (R, S) of vectors is said to be compatible if there ezist
positive integers m and n such that

(i) RENG and S € N§;

(i) ri <m, for 1 <i<m, and s; <m, for1 < j<n;

CUDIHELED DT
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1. Discrete Tomography: A Historical Overview 11

Clearly, if A(R, S) is not empty, then (R, S) is compatible. In 1957 Ryser
and Gale (independently of each other) gave a necessary and sufficient
condition under which the class (R, S) is nonempty ([8,9].

Consider the matrix A in which, for i = 1,...,m, row i consists of 7;
1’s followed by n — r; 0’s. A matrix having this property will be called
mazimal. A maximal matrix A is uniquely determined by its row sum
vector. Let its column sum vector be denoted by S. Furthermore, let us
denote the nonincreasing permutations of the elements of R and S by R’
and S', respectively, that is, r{ > 74 > --- >rl and 8§ > sy > --- > s!.

Theorem 1.1. Let R = (r1,...,mm) and S = (s1,...,8x:) be a pair of com-
patible vectors. The class A(R, S) is nonempty if and only if

dsi>Y 5, for 2<1<n (1.7)
=l =l

Proof:  Suppose that 2(R,S) contains a binary matrix A. Then the class
A(R, S') contains a binary matrix A’ constructed from A by a suitable permuta-
tions of the columns. A can be obtained from A’ (if they are different at all) by
shifting 1’s to the left in the rows of A’. Therefore we have (1.7).

Now let us suppose that (1.7) is true for the vectors R and S. We are go-
ing to construct a binary matrix A by the following algorithm, whose output is
illustrated in Fig. 1.2.

Algorithm 1.1.
Input: a compatible pair of vectors (R, S) satisfying (1.7);
Step 1. construct S’ from S by permutation w;
Step 2. let B= A and k = n;

Step 3. while (k > 1),

{
while (s, > Y7 bix),
{
let jo = maxici<m{j <k | bij =1, bij41 =" = by =0};
let row 1o be where such a jo was found;
set biyjo =0 and bigx =1 (i.e., shift the 1 to the right)
4
reduce k by 1
b
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12 Attila Kuba, Gabor T. Herman

1

Step 4. construct the matriz A from B by permutation ©~° of the columns;

Output: matriz A.

In order to prove that Algorithm 1.1 produces a matrix A with row sum vector
R and column sum vector S, we first prove the following property of Step 3.
Suppose that at the beginning of the execution of the code within the outer
brackets of Step 3 the matrix B can be written as (C|D), where C is a maximal
m x k matrix and D is an m x (n— k) matrix (D is an empty matrix when k = n),
such that

(i) the row sum vector of B is R,
(ii) denoting the column sum vector of B by T = (t1,...,t,) we have that

(@) sj=tj,fork+1<j<n,
(b) Z;L:#Z ;=Itj,f0!'2SlSn’

k k
(c) Zj:l 33‘ = Zj:l tj.

Under these circumstances, at the end of the execution of the code within the
outer brackets of Step 3 the matrix B will have the same property with k replaced
by k- 1.

We note that (i) above will certainly be satisfied, since the only type of change
that is made to B during Step 3 is the shifting of a 1 to the right (in other words,
the interchanging in a row a 1 and a 0).

At the beginning of the execution of the code we have that (observe (a) and
(b) above and the fact that 2 < k < n)

3; = is;— i 8;-
j=k i=k+1
n n m
> Sti= > ti=t(=bu). (1.8)
i=k j=k+1 i=1

If s}, = tx, we just move the last column of C to become the first column of D
and it is clear that (ii) will be satisfied with k replaced by k — 1.

Now suppose that s}, = ti + d, for some d > 0. We observe that there has to
be at least d values of ¢ (1 < ¢ < m), such that bix = 0 and b;; = 1 for some j,
1 < j < k. This is because, by the maximality of C, the definition of S’ and (c)
above we get

k k
kti > t; =) s> ks, =k(ty +d) (1.9
J J

j=1 j=1
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1. Discrete Tomography: A Historical Overview 13

and so t; > ti +d. This implies that the instructions within the inner while loop
can indeed be executed d times; each execution will set to 1 a single b;,x, which
is zero at the beginning of the execution of the while loop. Maximality of the
matrix consisting of the first £ — 1 columns of B is retained by the choice of the
Jjo and ip in Step 3 of the algorithm. When the inner while loop is completed we
clearly satisfy s; =t;, for k < j <n (i.e., (ii)(a) with k — 1 in place of k).

Let ji be the maximal value of j < k such that t; > tx + d at the beginning
of the execution of the code. From the way that the jo are selected in Step 3, it
follows that there are d values of i such that at the beginning of the execution
of the code bix = 0 and b;; = 1 and at the end of the execution of the code
bix = 1 and b;; = 0 for some j, j1 < j < k, and these are the only 2d locations
in the matrix that change value. Hence, for 2 <1 < j;, the value of E;;, t; does
not change as a result of the execution of the code and the validity of (ii)(b) is
preserved. On the other hand, at the end of the execution of the code, s} > ¢;,
for j1 < j < m. For k < j < n, this follows from the already shown fact that
(it)(a) holds at the end of the execution of the code with k — 1 in place of k. For
J1 < j < k, it follows from the definitions of S’ and j, that at the beginning
of the execution of the code sj > s, = tx +d > t; and the value of ¢; is not
increased during the execution of the code. Hence (ii)(b) holds at the end of the
execution of the code also for the alternate range j; <[ < n.

Trivially, for (ii)(c), the left-hand side is reduced by s}, (since k is to be replaced
by k—1) and the right-hand side is reduced by the original #; (for the same reason)
but also by d (corresponding to the d 1’s that have been shifted from a column
J < k into the kth column during the execution of the code). The preservation
of (ii)(c) follows, since s}, = tx + d at the beginning of the execution of the code.

Given this behavior of Step 3 it is now easy to complete the proof. First we note
that the conditions assumed upon entering the code within the outer brackets
of Step 3 are satisfied for the initial entry when k = n with C = B = A and
D the empty matrix. In this case (ii)(b) is just (1.7) and (ii)(c) follows from the
compatibility of R and S. Repeated applications of the code will bring us to the
end of execution for the case k = 2, at which time will have s} =¢; for 1 <j <n
(by (ii)(a) and (ii)(c) with k = 1), proving that at this time B has row sum vector
R (by (i)) and column sum vector S’ and, hence, A has row sum vector R and

column sum vector S. O
2 1 01 0O
3 11 0 01
3 1 1010
1 1 0 0 0O
4 2 1 11

FIGURE 1.2. The binary matrix reconstructed from row and column
sums R =(2,3,3,1) and S = (4,2,1,1,1) by Algorithm 1.1.
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Remark 1.1.

Note that while the statement of Theorem 1.1 is such that its provides
an answer to the consistency problem (for binary matrices from two spe-
cial projections), the proof of the theorem contains Algorithm 1.1, which
provides an answer to the reconstruction problem.

1. The computational complexity of Algorithm 1.1 is O(nm+nlogn) =
O(n-(m+logn)). Step 3 can be implemented efficiently if the column
indices of the last 1’s of each row of C' are stored and made use of
during the execution.

2. There are several versions of Algorithm 1.1 (see, for example, [8,9,29])
depending on which row i is selected (when there are two or more
rows available). Further alternatives can be found in [30-33].

3. The determination of the precise number of matrices in (R, S) is an
open problem. Only lower bounds are known, see [34-38].

Definition 1.4. For all indez sets I C {1,...,m} and J C{1,...,n}, let

tL,D) = 1] [T+ ) ri =) s (1.10)

il jed

With the help of this function Ford and Fulkerson [11] obtained an-
other necessary and sufficient condition for the nonemptyness of the class

A(R, S).

Theorem 1.2. Let R= (r1,...,7m) and S = (s1,...,8,) be a pair of com-
patible vectors. The class A(R, S) is nonempty if and only if

t(I,J) >0 (1.11)

forallIC{1,...,m} and J C{1,...,n}.

Proof: (Based on [39].) Suppose that there is a binary matrix A € 2(R, S). Let
A[I, J] denote the submatrix of A obtained from the rows and columns indexed by
I and J, respectively. Let, furthermore, I = {1,...,m}\I and J = {1,...,n}\J.
For any binary matrix X, let go(X) and o1(X) denote the number of 0’s and
1’s in X, respectively. Then it is easy to see that, for any I C {1,...,m} and
JC{1,...,n},

t(I,J) = ao(A[l, J)) + a1 (A[L, J]) > 0. (1.12)

Now suppose that (1.11) holds. For 1 < k < n, let J be a column index set
such that |J| =k and let I = {i | r; > k}. Then
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Y < M+ =k Y
jeJ igl igl
m k
= ) min{r,k} =) 5 (1.13)
i=1 j=1
and so, specifically,
k k
D s <> 5. (1.14)
j=1 j=1
It follows from Theorem 1.1 that 2A(R, S) is not empty. Ul

We now consider binary matrices when not only the row and column sum
vectors are given but also certain elements of the matrix are prescribed to be
0 or 1. Fulkerson [40] gave a condition for the existence of a binary matrix
having zero trace (i.e., Y ;_, a;; = 0). Anstee published results [41-43]
connected with the reconstruction and existence of binary matrices with
at most one prescribed 1 or 0 in each row/column. Here we consider the
general problem.

Definition 1.5. Let Q and P be binary matrices of size m x n. We say that

Q covers P ifpij < qij fori=1,...,m, j=1,...,n. We denote this relation as
P < Q. We define

AR, ) ={A| P< AL Q, A€ AR,S)}. (1.15)

Trivially, A2(R, S) = A(R,S) if P = (0)mxn and Q = (1)mxn. Using
suitable binary matrices P and () we can prescribe binary values to any
position. The value 0 is prescribed to (¢, j) if ¢;; = 0 and 1 is prescribed to

(4,7) if pij = 1.
If A€ AL(R,S) then

A-PeA2P(R-R(P),S - 5(P)) (1.16)

where O = (0);mxn, and R(P) and S(P) denote the row and column sum
vector of P, respectively. It follows that there is no loss of generality if
we restrict our studies to the classes A9(R, S) = th(R, S), in which the
position (7, j) can be classified as prescribed (if g;; = 0) or free (if ¢;; = 1).

Theorem 1.3. Let R = (r1,...,mm) and S = (s1,...,8,) be a pair of com-
patible vectors. The class A%(R, S) # 0 if and only if

PIPM L BLEDIUNDBUED BT (1.17)

i€l jE€J i€l igJ jed il
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16 Attila Kuba, Gabor T. Herman
forall I C{1,...,m} and J C{1,...,n}.

Theorem 1.3 can be deduced as a special case of two more general the-
orems by Kellerer ([5] on reconstruction of functions) and Mirsky ([44] on
reconstruction of integral matrices).

We now consider the problem of uniqueness for the classical case of binary
matrices and two projections.

Definition 1.6.  We say that a binary matriz A is nonunique (with respect
to its row and column sums) if there is a binary matriz B # A having the same
row and column sums as A. Otherwise, A is unique.

Definition 1.7. A switching component of a binary matriz A is a 2 x 2
submatriz of either of the following two forms:

Alz((l) 2) or A2=((1) (1)) (1.18)

A switching (operation) is a transformation of the elements of A that changes a
submatriz of type A1 into type Aa or vice versa (and leaves all other elements of
A unaltered).

Ryser used the name interchange [8] for this transformation. In fact, it is
called by many different names in the literature; for example, it is referred
to as a rectangular 4-switch in Chapter 3 by Kong and Herman in this book.
Clearly, switching does not modify the row and column sums. Accordingly,
if A has a switching component then it is nonunique. The reverse statement
is also true. In fact the material in Section 3.1 provides us not only with
the the following necessary and sufficient condition for uniqueness, but also
with a proof of Ryser’s Theorem [8].

Theorem 1.4. A binary matriz is nonunique (with respect to its row and
column sums) if and only if it has a switching component.

Theorem 1.5. (Ryser’s Theorem) If A and B are two binary matrices in
A(R,S) then A is transformable into B by a finite number of switchings (using
switching components).

Now consider the special case of Theorem 1.1, in which (1.7) is replaced
by

5, for 2<1<n. (1.19)
1

n
7=l Jj=

In view of the compatibility of (R, S) (1.19) is equivalent to S’ = S. Conse-
quently, no changes are made to the matrix B during the execution of Step

abris.nagy @science.unideb.hu



1. Discrete Tomography: A Historical Overview 17

3 in Algorithm 1.1 and so the B of Step 4 is the same as the B of Step 2;
namely, A. Since the 1’s of the maximal A are in the leftmost positions in
their rows, A has no switching component. It follows that the A obtained
by a permutation of columns of A also cannot have a switching component
and is consequently (by Theorem 1.4) unique with respect to its row and
column sums.

We have just proven that if (R, S) satisfies the conditions of Theorem 1.1
with (1.7) replaced by (1.19), then there is a unique matrix with respect
to R and S. Conversely, if the binary matrix A is unique then it has no
switching component. Consider two columns of A, say j; and j;. Let us
suppose that s;, < sj,. If a;;; = 1 for some i then a;;, = 1. (Otherwise,
if a;5; = 1 and a;5, = 0, there is at least one row i’ such that a;j, = 0
and ayj, = 1, which contradicts to the assumption that A has no switching
component.) In other words, the 1’s in column j; are in the rows in which
there is also a 1 in column j;. This means that if the columns of A are per-
muted nonincreasingly then we get just the maximal matrix A. Therefore,
S’ = S and so (1.19) is true.

From the discussion of the previous two paragraphs it follows that if
A is a unique binary matrix, then it can be recovered from its row sum
R and column sum S using Algorithm 1.1 without Step 3. That is, we
can construct the maximal matrix A from R and then recover A by a
permutation 7! at the columns of A (where 7 is the permutation that
produces S’ from S). This observation leads us to a remarkable property
of unique binary matrices, which is a consequence of the following easily
proved result on maximal matrices.

Lemma 1.1. If A is a mazimal binary matriz, then
aij =1<=>s; > |{k | re > i} (1.20)

Now observe that for a unique binary matrix 4 in (R, .S), the maximal
matrix A is the unique element of A(R, S) = A(R, S'). Since A is obtained
from A by the permutation 7! of the columns, it follows that for a unique
binary matrix A in 2A(R,S), (1.20) holds (even if A is not maximal). This
leads to yet another characterization of uniqueness.

Definition 1.8. An m x n binary matriz A = [ai;] is additive if there are
vectors X = (z1,...,Zm) € R™ and Y = (y1,...,yn) € R* such that, for i =
1,...,mandj=1,...,n, aij =1 if and only if x; +y; > 0.

Theorem 1.6. A binary matriz is unique if and only if it is additive.
Proof: Let A be an m x n binary matrix with row and column sum vectors

R and S. If A is unique, then it satisfies (1.20). This implies that A is additive
with respect to the vectors z; = —|{k | 7+ > r}|, i = 1,...,m, and y; = s;,
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18 Attila Kuba, Gabor T. Herman

ji=1...,n
Now let us suppose that A is additive with respect to the vectors X € R™ and
Y € R". Let B € (R, S). Consider the function

m n
K(A,B) =Y (@i +y;)(ai; — bij). (1.21)
i=1 j=1
From Definition 1.8 we see that each term in the sum on the right hand side of
(1.21) is nonnegative. Furthermore,

K(A,B) = Y &) (aij—bi)+ v ) (ai —bij)
i=1  j=1

j=1 =1

= Y wi(ri—ri)+ Y _yi(si —s;) =0. (1.22)
i=1 j=1

This implies that each term in the sum on the right-hand side of (1.21) is in
fact zero. Together with Definition 1.8 this implies that if a;; = 0 then b;; = 0.
However, A and B have the same number of 0’s, therefore A = B. That is, A is
unique. O

As a summary of uniqueness for a nonempty class A(R, S), we have the
following.

Theorem 1.7. Let R=(r1,...,mm) and S = (s1,...,3.) be vectors of non-
negative integers such that there is a binary matriz A € A(R, S). The following
conditions are equivalent:

(1) A is unique with respect to R and S;
(2) A has no switching component;

(8) (1.19) is satisfied;

(4) A is additive.

Condition (2) was found by Ryser [8]. It seems that (1.19) as a necessary
and sufficient condition on uniqueness was first published by Wang [33].
The condition given by (1.20) can be considered to be a discrete version
of that given in [45]. Additivity was introduced by Fishburn et al. [46] in
a more general way. Further combinatorial results about the class (R, S)
are in [47,48]. The cardinality of the class A%(R, S) is discussed in [35,38].

For the class (R, S) switching components are used to decide the ques-
tion of uniqueness. For the class AY(R, S) switching chains (a generaliza-
tion of switching components) can be used for the same purpose.
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1. Discrete Tomography: A Historical Overview 19

Definition 1.9. Let A € A9(R,S). A switching chain is a finite sequence

(i1, 41), (41, J2), (42, j2), (32, J3), - - -, (ik, Jk), (ik, 1) of free positions of the matriz
A such that

Qiyj; = Qigja = 0 = Qiggy, =

1—aij, =1=aigjs = - =1-ay_ 5 =1-ai; (1.23)

(k > 2). The corresponding switching (operation) is defined as changing the 0’s
and the 1’s at all positions in the switching chain.

It is clear that switching in a matrix A does not change the row and
column sums of A. As an example, see the following matrices generated
from each other by switching (the prescribed elements are denoted by ).

1 z 0 0 =z 1
z 0 1 z 1 0 (1.24)
01 =z 1 0 =z

The following theorems can be proven in a similar way as for the class
A(R, S) (see [49]).

Theorem 1.8. A binary matriz with prescribed values is nonunique if and
only if it has a switching chain.

Theorem 1.9. Let the binary matrices A, B € A%(R,S). Then A is trans-
formable into B by a finite number of switchings (using switching chains).

We now consider the possible values of a matrix element a;; in the class
A(R, S). The positions can be classified into one of three sets as follows.

Definition 1.10. Let A = A(R, S) be a nonempty class. The position (i,5) is
variant if there are matrices A, B € 2 such that a;; = 1 — b;;. A position (i, 7) s
an invariant 0 or an invariant 1 if ai; =0 or aij =1 for all A € A, respectively.
The sets of variant, invariant 0 and invariant 1 positions of the class 2 are
denoted by V(2A), IO(2A) and IV (), respectively, and (V(2A), 1 (21), V(1))
is called the structure of the class .

For example, the positions of a switching component of a binary ma-
trix A € 2 are in V(). The structure of A(R, S) shows which part of
the discrete space is ambiguous/unambiguous with respect to the row and
column sums. Without loss of generality we present structure results for
classes having nonincreasing row and column sum vectors.

Definition 1.11. A class ' = A'(R', S’) is called normalized if the elements
of the vectors R' = (r},...,rh,) and S’ = (s},...,s),) are ordered as r} > ry >
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2T and sy 285> 0 > 8.
In a normalized class &' = A'(R', S’) we define the (m+1) x (n+1) structure
matriz [10] T = (txi) by

win{¢(1,J) | |I| =k, |J| =1}

kxl+Y ri=Y"s (1.25)

i>k i<t

ki

forallk=0,1,...,mandl=0,1,...,n.

Rephrasing Theorem 1.2 we can say that a normalized class ' is not
empty if and only if the structure matrix T of 2’ has no negative elements.
If A€ 2, then from (1.12) we have that

thy = O'O(A[{l, ... ,k},{l,. . .,l}]) +
o (Al{E+1,...,m}{I+1,...,n}]) (1.26)

for any £ =0,1,...,m,l =0,1,...,n. It follows that if tx; = 0 then

{1,...,k} x {1,...,1} C IO,
{k+1,....m}x{{+1,...,n} CIO®A). (1.27)

We are going to show that the invariant 1 and invariant 0 sets are unions
of such discrete rectangles.

Lemma 1.2. Let A =A(R',S’) be a normalized class.

(i) If there is a matriz A in the class A' such that a;; = 0 and a;; = 1 for
some 1 <i<mand1<j<j <n, then both (i,j) and (i,5') are variant
positions of a switching component in A.

(i) If there is a matriz A in the class A' such that aij = 0 and ay; = 1 for
some 1<i<i <m and 1< j<n, then both (i,5) and (¢, j) are variant
positions of a switching component in A.

Proof:  Statement (i) is true because s} > s}, in a normalized class and there-
fore there is a row i’ such that a;;; = 1 and ay; = 0. Part (i) can be proven
analogously.

Now let ¢ be any row that contains a variant position and let j and j’
be the column indices of the leftmost and rightmost variant positions in
row . It follows that (i, k) is a variant position for j < k < j'. For suppose
otherwise. If (¢, k) is an invariant 1 position then for some matrix A in the
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class a;; = 0 and a;x = 1, which implies that (i, k) is a variant position (by
Lemma 1.2 (i)). A similar argument holds if (3, k) is an invariant 0 position.
Therefore, the variant positions follow each other in the rows (analogously,
also in columns) consecutively.

Furthermore, also on the base of Lemma 1.2 (i), it is easy to show that
in the rows of the normalized class the invariant 1, variant and invariant
0 positions (if any) follow in this order from left to right. Similarly, on
the base of Lemma 1.2 (ii), it can be proven that in the columns of the
normalized class the invariant 1, variant and invariant 0 positions (if any)
follow in this order from top to bottom.

In the proof of the following lemma we will make repeated use of the
following trivial consequence of Ryser’s Theorem (Theorem 1.5). Let 2 =
A(R,S). If (,5) € V(2A), then for any matrix A € 2, there is a row ¢’ and
column j' such that (¢/,j5) € V(), (4,j') € V(A) and a;; = 1 —ayj; =
1- Qg .

Lemma 1.3. Let %' = A(R',S') be a normalized class, let i1 and iz be two
rows which contain variant positions such that 1 < iy < iz < m and let [j1, ji] and
[42, 2] be the corresponding ranges of the (consecutive) variant positions. Then

either j; >j5 or both ji =j» and jj = js. (1.28)

Proof: We note that j1 < j2 is impossible, for then we would have the invari-
ant 1 position (i2, j1) below the variant position (¢1,j1). We complete the proof
by showing that the assumption j» < ji implies that j; > j5. (One can prove
similarly that ji # j5 also implies that j; > j3.)

Since (i1, 41) is a variant position, there is an A € 2’ for which

a;;;, =0. (1.29)
Consider the first j; — 1 columns of A. If A[{1,...,m},{1,...,71 — 1}] contains
only 1’s then all positions of {1,...,m} x {1,...,71 — 1} are invariant 1’s (be-

cause tm,j;—1 = 0 and (1.27)), which contradicts the assumption that j» < ji.
Therefore, there is a 0 somewhere in the first j; — 1 columns of A. Let ¢ be the
index of the uppermost row containing a 0 in the first j1 — 1 columns of A. Then

oo(A[{1,...,i—1}L{1,...,51 = 1}]) =0. (1.30)
Furthermore, 7 > 4;, because there are only invariant 1’s to the left of j;, and so
there can be only invariant 1’s above (i1,1),..., (41,71 — 1).

Let j be a column such that

a;j =0. (1.31)
Clearly

aiy; = 1. (1.32)
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Then a;j, = 0, for otherwise (i1,7),(¢1,1), (¢,7), and (4, j1) would constitute
a switching component (see (1.29), (1.31), and (1.32)). Furthermore, if a; = 1
for some I € (j1,...,n], then on the basis of Lemma 1.2 (i) we can perform a
switching on elements aij;, = 0 and ay = 1 (and the other two in these columns)
getting a new binary matrix B € 2’ (without altering a;,; and a;,;, ). But in this
case bij =1, bi;j; =0, bij =0, and b;j, =1, so these four elements constitute a
switching component, which is in contradiction with (i1, j) being an invariant 1

position. Therefore, a;; = 0 for [ = ji,...,n. Similarly, aj, =0for k =1i,...,m
(on the basis of Lemma 1.2 (ii)).
Furthermore, for the same reason, all elements of A in the rectangle {i, ..., m} x

{j1,...,n} are 0, that is

o1(Alfi, ..., m}, {1, ..., n}]) =0. (1.33)

Summarizing (1.30) and (1.33), we get ti—1,;,—1 = 0. This implies that the
rectangles {1,...,i — 1} x {1,...,51 — 1} and {i,...,m} x {j1,...,n} contain
only invariant 1 and invariant 0 positions, respectively. By the assumption that
j2 < j1, this implies that 42 > 4. That in turn implies that j1 > j, as needed to
complete the proof. O

Theorem 1.10.  The variant set of a normalized class %' = A(R',S’) # 0,
can always be written as

vl = LPJ I, x J, (1.34)

q=1

(p = 0 if there are no variant elements), where

Ig={ig,...,ig}, 1<i1<i<ia<ig<--<ip<ipb<m, (1.35)
Jo={iar--rdals 1< Jp <ip <jp-1 <Jpo1 <+ <j1 <j1 <m. (1.36)

Proof: We define iy, i, jq, j; inductively as follows. We set ig = 0. Assume
that i, is already defined. If there is no ¢ > i, such that row i contains a variant
position, then p = q and we are done. Otherwise, let ig4+1 be the smallest such ¢
and [jg+1, jq+1] be the associated range of the consecutive variant positions. (Note
that jo+1 < jo+1 due to the consequence of Ryser’s Theorem as stated above in
Lemma 1.3.) Let i;,; be the maximal value of ¢ such that the associated range of
consecutive variant positions is still [jg+1, jg+1]. (By the same reasoning involving
Ryser’s Theorem ig41 < igy1. Also, for all rows i such that i1 <4 <idgyy, we
must have that the range of variant positions is [jg+1,Jq+1]-) By the properties
stated above and in Lemma 1.3, we must also have that jgi; < jg.

Remark 1.2.  Since the rows/columns of the variant rectangles are between

the invariant 1’s and 0’s, the invariant 1 and invariant 0 sets of the class A’ are
the unions of rectangles of the form (1.27).

abris.nagy @science.unideb.hu



1. Discrete Tomography: A Historical Overview 23

We illustrate the material on the structure of a class in Fig. 1.3 for
R = (4,4,10,13,11,7,10,9,1) and S = (1,7,4,7,9,8,5,7,7,6,1,3,4). On
the left of the figure is an element of 2(R',S") with the variant positions
shaded. It is trivial to check that the shaded positions are indeed variant
(all values within either shaded box can be altered by switchings using
switching components entirely within that box). The question arises, how
do we know that none of the unshaded positions are variant?

R R

13 (HI11111\1 1| 4 [o[HoTH 1]1]0 ololo]e]
I ririnvinrnn 0, 4 lol@lolel1[1]o olololo
10 [(1(1]1\1]1]1]1]1 0 10 |ol1H1|1]1]1]1]1]1]0
10 [1(111]1|1]1]1]1 0 13 (1[1(1]1]|1[1]2]|2[1]1]|1
9 |1\1|1|111]1|1 0| 1 {olilr[1{1l11]1]1]1]0
7 (21]1]111]1]1]1]0l0[0]0]0]0 7 |0l1lel1]1[1]0]1]1]1]0
4 |[1] ololololo]o] 10 [0] 1|1(1]1]1]1]1]0
4 [1] ololololo]o] 9 lol1l@l1l1]1]1]1]1]1]0
1 I olofo]o]o]o 1 [o] ol1]olololololo
$’9877776544311 51 747985776134

FIGURE 1.3. Illustration of the structure of the class 2. Right: The
row and column sum vectors, R and S, and the structure of the class
A(R, S). The variant positions are shaded. Left: The structure of the
normalized class 2A(R', S').

This is, in fact, a consequence of some remarkable general results in [50].
Here we state without proof the applicable special case of Theorem 2.6 (i)
of [50]. As it will be easily noted, this result is close in spirit to Theorem 1.6.
(In fact, Theorem 1.6 is derived in [50] as a corollary of the results presented
there.) Another closely related theorem is stated and proved in Chapter 8
by Matej, Vardi, Herman and Vardi.

Definition 1.12.  Let A = [ai;] be an m x n binary matriz. A pair of vectors
X =(x1,...,Zm) ER™ and Y = (y1,...,Yn) € R" is said to be compatible with
Aif,fori=1,....mandj=1,...,n,

>0, if ai; =1,
zi +y; = {S 0, if ai=0. (1.37)

Theorem 1.11. Let R = (r1,...,™m) and S = (s1,...,8n) be vectors of
nonnegative integers such that there is a binary matric A € A(R,S). Then, for
i=1,...,mandj=1,...,n, (i,7) is not a variant position if and only if there
exists a pair of vectors X = (x1,...,Zm) andY = (y1,...,yn) which is compatible
with A such that z; +y; # 0.

Let X = (11,9,8,8,8,8,7,5,4,4,4,2,2) and Y = (—1,-3,—4, -4, -4,

—6,—8,—8,—10). Then it is easy to check that this pair of vectors is com-
patible with the matrix on the left of Fig 1.3 and that, for all the unshaded
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positions (%,7), ; + y; # 0. Theorem 1.11 therefore implies that the un-
shaded positions are in fact not variant positions. Once we have determined
the structure of the normalized class A(R’', S’) we can, by performing the
reverse permutation of the rows and columns, obtain the structure of the
original class (R, S); this is illustrated on the right of Fig 1.3.

The structure of the class of binary matrices was studied first by Ryser
[51,52] and Haber [53]. Our summary is based on [54]. We remark that the
structure of the class A9(R, S) is similar to the structure of (R, S) as it
was shown in [50]. The same paper describes an algorithm for producing
the structure of a nonempty class based on a sample matrix from it; see
also [55]. (Such algorithms can be used for finding the vectors X and Y,
which we seemed to have pulled out of a hat in the previous paragraph.)

We complete this subsection by considering the problem of reconstruction
for the classical case of binary matrices and two projections. As we saw, for a
nonempty class A(R, S), Algorithm 1.1 constructs a solution in polynomial
time.

If we happen to know that there is a unique binary matrix A4 in %A(R, S),
then we also know that this matrix must satisfy (1.20). This knowledge
leads us to the following reconstruction algorithm, which in practice is likely
to be much better than Algorithm 1.1. Its output is illustrated in Fig. 1.4.
(Algorithms for reconstructing unique binary matrices were described also
in [31,56,57].)

Algorithm 1.2.
Input: a compatible pair of vectors, (R, S), satisfying (1.19);
Step 1. A= O; (zero matriz)
Step 2. find i1,42,...,%m such that riyy > 1iy > -+ 2> 1i.;

Step 8. for j =1 ton,
for k=1 to s,
aij =1;

Output: matriz A.

In certain cases the number of binary matrices having given row and
column sums can be very high. For example, if R=S = (1,...,1) (m =n)
then |2A(R, S)| = n!. For such reasons it is interesting to study the problem
of reconstructing special binary matrices having some special property. Us-
ing such a property during the reconstruction, we can hope to reduce the
number of possible solutions.
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1 00010
3 01110
) 11111
2 01010

13 2 41

FIGURE 1.4. Reconstruction of a unique binary matrix.

The most frequently used properties are geometrical. For example, let us
suppose that the 1’s of the binary matrix to be reconstructed follow each
other consecutively in the rows and columns.

Definition 1.13. A binary matriz is h-convez (respectively, v-convex) if in
the rows (respectively, columns) the 1’s follow each other consecutively. If a binary
matriz is both h- and v-conver then it is hv-convez (see Fig. 1.5). The class of
h-convez, v-convez, and hv-conver binary matrices will be denoted by (h), (v),
and (hv), respectively.

11100 01100 01100
11000 11101 11111
01111 01110 01110
10000 0 00O0O 00010

FIGURE 1.5. Examples of h-convex, v-convex, and hv-convex binary
matrices.

Kuba published an algorithm [58] for reconstructing hv-convex binary
matrices from their row and column sums.

Definition 1.14.  The neighbors of the position (i,j) are the positions
(t-1,7), (5,7 —1), (4,7 +1), and (1 + 1,5+ 1). We say that two positions of 1’s,
(3,7) and (k,l) are connected if there is a sequence of positions of 1’s

(4,4) = (31, 51), (82, 42), - - -, (B—1, Je-1), (3¢, ) = (K, 1) (1.38)
(t > 2) such that (4u+1,ju+1) is one of the neighbors of (iw,ju) for all u =
1,...,t — 1. A polyomino is a binary matriz in which every position of 1 is con-

nected to every other position of 1 (see, for example, Fig. 1.6). The class of
polyominoes is denoted by (p).

The concept of polyomino is well-known in many other fields but it is
usually given a different name. For example, in the picture processing liter-
ature [59] a polyomino would be called a digital picture with two levels in
which the set of white pixels is 4-connected and in the more general theory
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01100
11101
01111
11000

FIGURE 1.6. A polyomino.

of digital spaces [60] it would be called a finite binary picture over (Z2,w,)
in which the set of 1-spels is ws-connected.

Specifically, the reconstruction theory of the class of hv-convex polyomi-
noes is well developed. There are upper and lower bounds to the maximum
number of hv-convex polyominoes having given row and column sum vec-
tors R and S [61]. Reconstruction methods [62-64] have been suggested
for this class of binary matrices. A newer method is given in Chapter 7 by
Del Lungo and Nivat in this book. An important result for this class of
binary matrices is that the computational complexity of the reconstruction
problem for hv-convex polyominoes is polynomial [62], but for the classes
(»), (h), (v), (p,h) (i.e., h-convex polyominoes), (p,v) (i.e., v-convex poly-
ominoes), and (hv) the problem is NP-complete [65].

1.3 Applications

1.8.1 Data compression, data coding, and image processing

Projections can be considered as an encoding of the object. Data coding
is interesting from the viewpoints of data security and data compression.
Knowing that the RECONSTRUCTION(E, £) problem is NP-complete if the
number of projections is greater than 2, encoding via projections can ensure
some security of the data [66].

Let us now consider data compression. Let F be a discrete set in Z?. To
store an F' of size n¢ we need n® number of bits, while its q projections
with size n9~! need q - log, n - n%~! bits for storage. Therefore, the data
compression ratio is

nd n

= 1.
q-logon-ni-1  q-log,n (1.39)

independently of the dimension d.

From Section 1.2 it is clear that, in general, some information is lost
when only the projections are available instead of the discrete set (or,
generally, discrete image). However, as Shilferstein and Chien pointed out
in [67)], several image processing operators have analogous operators on
their projections. Further examples are given in [68] for image registration
and in [69] for thinning of unique binary images, using only their projections
in both cases.
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The projections can be used also in image databases. Representing the
components (symbols) of the images by their (symbolic) projections, data-
base operations such as spatial reasoning, visualization and browsing can
be performed (see Chapter 21 by Chang in this book).

1.8.2 Electron microscopy

Images produced by transmission microscopes can be considered to be pro-
jections of the object to be studied. The electron beam transmitted through
the specimen can be used to estimate line integrals. If the specimen is com-
posed of a number of homogeneous parts, then DT can be applied for
determining the spatial structure. Where only a few noisy projections can
be taken from a limited range angles, DT seems to be the only way to
reconstruct good quality images.

There are several types of electron microscopy to which the methods of
DT had been applied. One of the first experiments was performed by Crew
and Crew [70]. They suggested a heuristic discrete algorithm to reconstruct
hemoglobin molecules from 3 and 4 projections.

Due to the introduction of a technique [71,72] called QUANTITEM
(QUantitative ANalysis of The Information from Transmission Electron
Microscopy), based on high-resolution electron microscopy, it is possible
to measure the projections of atomic structures in crystals. The problem
of reconstructing discrete sets from their projections for the determina-
tion of atomic structures from QUANTITEM data motivated the Mini-
Symposium on Discrete Tomography at DIMACS in 1994. Some of the
crystalline phantoms designed for testing new reconstruction algorithms
are used in a number of chapters of this book as well.

A description of biological problems, which are potentially solvable by
electron microscopy and DT, is given in Chapter 18 by Carazo et al.

1.3.8 Biplane angiography

For the visualization of a cardiac ventricle it is a standard procedure to in-
ject Roentgen contrast agent into it and to take X-ray images. If we assume
that the distribution of the dye is homogeneous and has unit absorption,
then we have a binary object consisting of two kinds of points: points of
1’s and 0’s depending on the presence or absence of the dye. Usually, two
orthogonal projections of the ventricle are collected with a conventional bi-
plane X-ray system. The aim is to determine the three-dimensional struc-
ture. In practice it is sufficient to reconstruct the two-dimensional cross
sections. This problem can be stated as the reconstruction of a binary ma-
trix A = (aij)mxn from its row and column sum vectors. In general, there
is not a unique solution to this problem, as it was shown in Subsection
1.2.2. One way to resolve this ambiguity is to reformulate the reconstruc-
tion problem as an optimization problem:
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m n
minimize Y cijaij, (1.40)

i=1 j=1

under the constraints of (1.5) and (1.6) where the elements of the matrix
C = (cij)mxn represent the costs of assigning the value 1 to the element
aij. With careful selection of C' we can hope to get a useful solution [73].
For example, we can use the fact that the successive slices are similar to
each other in a ventricular structure. Accordingly, if a section is already
reconstructed then we choose C such that the binary matrix of the next
section is similar to the previous one. Slump and Gerbrands [74] suggested
to use a minimum cost capacitated network flow algorithm to find such
an optimal solution. A reconstruction program has been developed to de-
termine the dynamic 3D shape of the left or right heart chamber [75]. A
summary of this problem is given in Chapter 17 by Onnasch and Prause
in this book.

The first paper discussing the application of binary tomography in car-
dioangiography seems to be due to Chang and Chow [76]. They recon-
structed a clay model of a dog heart from two projections estimated from
digitized X-ray films. In order to reduce the ambiguity of the problem they
supposed that the cross sections of the heart are convex and symmetric
with respect to two orthogonal axes. For a very recent work (which applies
the approach of Chapter 8 by Matej, Vardi, Herman, and Vardi in this
book to cardioangiography) see [77].

Experiments show that the reconstruction of blood vessels is possible
from so-called cone beam projections [78].

1.8.4 Computerized tomography

As it was mentioned in Section 1.1, the methods used in CT are not suitable
to reconstruct discrete functions from a few projections. If the number of
projections is large enough, then CT is able to generate images that are
near to the ideal discrete function. If we know the range of the discrete
function to be reconstructed, then by the methods of DT we can hope to
get images with better resolution and accuracy; see Chapter 15 by Browne
and Koshy in this book, where they write about the technical challenges in
DT for CT-assisted engineering and manufacturing.

A possible solution in this direction is given in Chapter 9 by Chan,
Herman, and Levitan. Their idea for getting better quality images is a two-
step procedure. In the first step a conventional reconstruction technique is
used to create PET (positron emission tomography) images. Then these
images are used as initial values to an iterative DT method.
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1.4 Conclusion

In this chapter we have given a brief historical overview of some of the
foundations of, algorithms for, and applications of discrete tomography. To
get a more complete coverage of this field, read on!
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