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Content of the course material 

Part I - Imre Kocsis 
1. Trigonometric and Exponential Functions 

2. Statistical Analysis of Vibration Signals 

3. Hilbert Spaces, Orthogonality, Similarity of Functions 

4. Orthonormal Systems, Fourier Series, Trigonometric System 

5. Exponential System, Vibration Spectrum 

6. Continuous Fourier Transform, Discrete Fourier Transform, FFT 

Part II - Krisztián Deák 
7. Cepstrum Analysis, Envelope Analysis 

8. Continuous and Discrete Wavelet Transform 

9. MRA, Scalogram 

10. Wavelet Transforms in Machine Fault Diagnostics 

11. Digital Filters, FIR, IIR 

12. Digital Filter Design 
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Content of this short course (Part I) 

 

− Fields and goals and of machinery diagnostics 

− Some mathematical tools used in vibration diagnostics 
(Fourier theory first of all) 

− About an industrial condition monitoring system (SPM), case 
studies 
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About machinery (technical) diagnostics 

Machinery diagnostics is a fundamental tool of predictive maintenance. 

It provides data about the current condition of machine and process 
elements for maintenance decisions. 

The goal of predictive maintenance is to provide the data required 

− to ensure the maximum interval between repairs and 
− to minimize the number and cost of unscheduled outages created by 

failures. 
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Techniques normally used for predictive 
maintenance are 

− vibration diagnostics, 
− acoustics (mainly ultrasonic), 
− thermography, 
− tribology (wear particle analysis), 
− process parameter monitoring. 

 
Most predictive maintenance programs use vibration analysis as the 
primary tool. 
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Symptoms 

 

The first step of condition monitoring is to find connection between faults 
and measurable symptoms generated by the failures investigated. 

 

In the field of vibration monitoring symptoms can be detected with the 
analysis of the vibration signal and its transforms. 

 

Since nowadays mainly digital measurement systems are used, sampled 
signals are available for the analysis. 

 

Some symptoms appear in the time-domain (e.g. in velocity-time function) 
others can be revealed from the frequency spectrum (frequency-domain 
analysis) or from other transforms of the signal. 
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Typical symptoms in vibration diagnostics 

Symptoms in the ‘time-domain’ 

Certain types of mechanical damage of rotating parts imply the change of 
some statistical parameters in time, such as 

− mean, standard deviation, 
− RMS, peak value, 
− skewness, kurtosis 

of the vibration velocity or acceleration data in the sampled signal. 

The changed shape of the probability density function of the vibration 
velocity or acceleration data can be an indicator of failures. 

E.g. the level of shock pulses generated by a healthy ball bearing follows 
normal distribution, the appearance of damage in the bearing results in the 
change of probability density function.  
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Symptoms in the ‘frequency-domain’ 

The generated vibrations have special frequencies depending on the 
rotational speed and the type of the rotating component. 

The majority of failures generates a group of spectrum lines (patterns 
characteristics to the failures).  
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The main sources of machine vibrations 

 
Harmonic vibrations 

(generated by rotating 
parts) 

 
Shock pulses 

(generated by shocks 
and collisions between 
parts) 
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Harmonic vibrations generated by rotating parts with failures 

Many types of mechanical failures of rotating parts generate periodic, nearly 
harmonic vibrations, for example: 

− unbalance, 
− angular or parallel 

misalignment of shafts 
(at couplings) 

− bended shafts 
 

The generated vibrations have special frequencies depending on the 
rotational speed and the type of the rotating component. 

The phase shift of vibration signals coming from different sources can be 
informative in certain cases. 
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Characteristic frequency symptoms at different parts of a drive chain 

 
source: David Stevens  http://www.vibanalysis.co.uk/vibanalysis/index.htm 
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The ‘basic frequency’ is the rotational speed of the shaft expressed in  

[
𝑟𝑒𝑣

𝑠
]  [𝐻𝑧]  

type of the 
failure 

order symptom in the spectrum 

unbalance of a 
rotor 

1× 

 

angular 
misalignment 
of shafts at a 
coupling 

2× 

(1×,3×) 
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gear fault a group of 
frequencies 

 

 

Since the majority of failures generates a group of spectrum lines (characteristic 
patterns), in many cases, pattern recognition is required rather than the detection 
of a certain frequency value. 
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Measurement of harmonic vibrations 

 

 

 

Connecting a common 
accelerometer the 
superposition of harmonic 
vibrations generated by 
rotating parts can be measured. 

 
The vibration spectrum provided by the Fourier analysis shows the 
frequencies appearing in the vibration signal and the magnitudes belonging 
to them. 

Based on these data the problematic components and the severity of the 
failures can be identified. 
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Commonly used basic quantities in vibration 
analysis 

− vibration displacement in [𝜇𝑚] 

− vibration velocity in [
𝑚𝑚

𝑠
] 

− vibration acceleration in [
𝑚

𝑠2] or [𝑔] 
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Shock pulses generated by defective rotating parts 

Shock pulses are non-periodic transient waves in the time signal. 

Some important types of failures cause low-energy transient vibrations 
rather than high-energy periodic vibrations. 

The most important examples are bearing and gear failures. 

 

  

                                          

              

 

 

                                 

 

shocks, collisions 
between parts 
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Animation: spminstrument.com 
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source: spminstrument.com 
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source: spminstrument.com 
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Measurement of shock pulses 

Measurement of low-energy shock pulses requires special transducers and 
signal processing methods. 

 
Since bearings hold shafts and all connected parts, they are crucial machine 
elements, detection bearing faults is an important task in diagnostics. 

To be able to capture the low-energy shock pulses generated by bearing 
surface faults the ‘shoch pulse transducer’ must be mounted close to the load 
zone of the bearing and must be fixed properly. 
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Fourier theory – a fundamental tool in vibration diagnostics 

 

− The idea of the decomposition 
− Decomposition of functions  
− Hilbert spaces, orthogonality, similarity 
− Fourier series 
− The trigonometric system, the exponential system 
− Fourier transform 
− Discrete Fourier transform 
− Fast Fourier transform 
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Decomposition with respect to an orthonormal system 

Goal: to transfer the ‘problem’ into a space where its ‘treatment’ is easier  

The simplest example: decomposition of vectors (in ℝ3) with respect to 

the orthonormal basis {𝑖̇,̅ 𝑗̇,̅ �̅�} 

 

E.g. angle of vectors �̅� and �̅� is         
𝑎𝑥∙𝑏𝑥+𝑎𝑦∙𝑏𝑦+𝑎𝑧∙𝑏𝑧

√𝑎𝑥
2+𝑎𝑦

2+𝑎𝑧
2∙√𝑏𝑥

2+𝑏𝑦
2+𝑏𝑧

2
 

ℝ3 (real triplets)vectors (geometrical space)

�̅�
�̅�

 ̅
�̇�̅

�̇�̅

�̅�

𝑎 

𝑎 

𝑎 

  

  

  

 ̅     𝑖̇ ̅    𝑗̇ ̅    �̅�
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Decomposition of periodic functions 

 

  

discrete complex spectrum
(Fourier coefficients)

periodic signals
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Decomposition of sampled signals 

 

  

discrete 
spectrum

sampled 
signal

       
  
 

  

 
𝑘

 𝑘

 𝑘
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Non-periodic functions, Fourier transform 

 

  

continuous complex 
spectrum

integrable signals

    

 
      ,   ℝ
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Orthogonality and decomposition in ℝ  ( -dimensional Hilbert 

space) 

The inner product of elements      ,  ,    , 𝑦   𝑦 ,  , 𝑦   ℝ  is 

〈 , 𝑦〉     𝑦 

 

   

. 

The norm of element      ,  ,     ℝ  is 

‖ ‖  √〈 ,  〉  √   
 

 

   

 

Elements      ,  ,     ℝ  and  𝑦   𝑦 ,  , 𝑦   ℝ  are orthogonal if 

〈 , 𝑦〉     𝑦 

 

   

 0. 
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A basis {𝑏 ,  , 𝑏 } ⊂ ℝ  is orthogonal if its elements are pairwise orthogonal, and 

it is orthonormal if, additionally, the elements are unit vectors (with unit length). 

The coefficients in the decomposition of   ℝ  with respect to a given 

orthonormal basis {𝑏 ,  , 𝑏 } can be calculated as the inner products of   and the 

basis vectors 𝑏  as follows 

〈 , 𝑏 〉, 𝑖   , . . ,  , 

The decomposition of   is 

   〈 , 𝑏 〉 ∙ 𝑏 

 

   

 

E.g.  {𝑖̇,̅ 𝑗̇,̅ �̅�} is an orthonormal basis of ℝ3 and 

 ̅  〈 ̅, 𝑖̇ ̅〉 ∙ 𝑖̇ ̅  〈 ̅, 𝑗̇ ̅〉 ∙ 𝑗̇ ̅  〈 ̅, �̅�〉 ∙ �̅� 

is the decomposition of  ̅ with respect to {𝑖̇,̅ 𝑗̇,̅ �̅�}. 
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Orthogonality and decomposition in function spaces (infinite dimensional 

Hilbert spaces) 

A goal in vibration diagnostics is to identify 
the frequency, amplitude and phase of 
harmonic vibrations (signals) characteristic 
to the machine elements with certain 
failures from the superposition of 
vibrations (time signal). 

 

 

This problem can be solved with the decomposition of the vibration signal with 

respect to an appropriate orthonormal system.  

1 2

3

4

teraccelerome

signaltime
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Commonly used systems for the decomposition of  -periodic 

functions 

Orthonormal trigonometric system 

 

{
 

√ 
,
√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  ) ,

√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  )}

k ℕ

 

 

Orthonormal 

exponential system 

{
 

√ 
∙   ∙ ∙

  
 

∙ }
   

 

 

Trigonometric system 

 { ,    (𝑘 ∙
 𝜋

 
∙  ) ,    (𝑘 ∙

 𝜋

 
∙  )}

k ℕ
 

{ ,     𝒌 ∙  𝜋 ∙ 𝒇𝟎 ∙   ,     𝒌 ∙  𝜋 ∙ 𝒇𝟎 ∙   }k ℕ 

Exponential system 

{  ∙ ∙
  
 

∙ }
   

 

{  ∙ ∙  ∙𝒇𝟎∙ }
   

 

Remark: As we will see later, the trigonometric system and the exponential 

system are orthogonal but not orthonormal. 
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Some elements of the trigonometric system with  -periodic basic functions 

A trigonometric system contains  -periodic     and     basic functions of frequency    
 

 
, 

and harmonics of frequencies 𝑘 ∙   , 𝑘   , ,  : 

 period frequency 

   (
 𝜋

 
∙  )       𝜋  ∙      

 

  
    

 

 
 

   (
 𝜋

 
∙  )       𝜋  ∙      

 

  
    

 

 
 

   ( ∙
 𝜋

 
∙  )       ∙  𝜋  ∙     /      

   ( ∙
 𝜋

 
∙  )       ∙  𝜋  ∙     /      

   ( ∙
 𝜋

 
∙  )       ∙  𝜋  ∙     /      

   ( ∙
 𝜋

 
∙  )       ∙  𝜋  ∙     /      

   (4 ∙
 𝜋

 
∙  )      4 ∙  𝜋  ∙     /4 4   

   (4 ∙
 𝜋

 
∙  )      4 ∙  𝜋  ∙     /4 4   

Every element of the trigonometric system is related to a frequency which is a physical 

quantity.  
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 →    (
 𝜋

 
∙  )       𝜋  ∙    

 

 →    (
 𝜋

 
∙  )       𝜋  ∙    

 

 →    ( ∙
 𝜋

 
∙  )       ∙  𝜋  ∙    

 

 →    ( ∙
 𝜋

 
∙  ) 

 

 →    ( ∙
 𝜋

 
∙  )       ∙  𝜋  ∙    

 

 →    ( ∙
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∙  )       ∙  𝜋  ∙    
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 →    (4 ∙
 𝜋

 
∙  )      4 ∙  𝜋  ∙    

 

 →    (4 ∙
 𝜋

 
∙  )      4 ∙  𝜋  ∙    
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About sin and cos functions 
Remark: Since 

        (  
𝜋

 
) 

the trigonometric system can be 
written only with sin functions. 

 
Three equivalent formulas are used to describe harmonic vibrations 

𝐴 ∙      ∙      𝐴 ∙      𝜋 ∙      𝐴 ∙    (
 𝜋

 
∙    ), 

where the physical quantities are 

−   is the angular frequency (angular velocity in physics)   [
𝑟𝑎𝑑

𝑠
] 

−   is the frequency   [
 

𝑠
]  [

𝑟𝑎𝑑

𝑠
]  [𝐻𝑧] 

−   is the period   [𝑠] 

−   is the phase   [𝑟𝑎𝑑]. 
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A linear combination of sin and cos functions of the same frequency can be written 

as a “shifted” sin function of the common frequency as follows 

𝐴 ∙      ∙    𝐵 ∙      ∙    √𝐴  𝐵 ∙      ∙     , 

where 

  {
     

𝐵

𝐴
,    𝐴 ≥ 0

     
𝐵

𝐴
± 𝜋,    𝐴 < 0

 

Consequently, a decomposition with respect to the trigonometric can be written 

with help of shifted sin functions, thus one frequency cannot appear twice. 
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Example 

       .5 ∙      5  0.8  44.9,      [0,  ] 

where   is the period. 

 

amplitude   .5 
maximum 57.4 
minimum   .4 

period 
 𝜋

 5
≈ 0. 5  

frequency 
 5

 𝜋
≈  .979 

angular frequency  5 

phase  0.8 
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Example 

     0.078 ∙       50  0.05   .44 ,      [0,  ] 

where   is the period. 

 

 

amplitude 0.078 
maximum  .5 0 
minimum  . 64 

period 
 𝜋

  50
≈ 0.005 

frequency 
  50

 𝜋
≈  00 

angular frequency   50 

phase  0.05 
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The complex exponential function 

Complex sin, cos and exponential functions are defined as power series: 

   𝑧        ∙
 

  𝑘    !

 

   

∙ 𝑧  +  

   𝑧        ∙
 

  𝑘 !

 

   

∙ 𝑧   

𝐸 𝑃 𝑧      
 

𝑘!
∙ 𝑧 

 

   

,     𝑧  ℂ 

Remark: The real sin, cos and exponential functions are obtained as 
restrictions to ℝ. 

The Euler formula, which comes directly from the definitions, show the 

connection of the three functions 

  ∙       𝑖 ∙     ,       ℝ 

Seeing the Euler formula, it is not surprising that somehow the complex 

exponential functions can also be used for decomposition. 
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Representation of the complex valued function  →   ∙       𝑖 ∙      
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Values of the complex exponential function can be calculated from values of 

real trigonometric and exponential functions: for an arbitrary complex 

number 𝑧  𝜎  𝑠 ∙ 𝑖,  𝜎, 𝑠  ℝ  

    𝜎+𝑠∙   𝜎 ∙  𝑠∙   𝜎 ∙     𝑠  𝑖 ∙    𝑠  

Since  𝜎  is a positive real number and 

| 𝑠∙ |  |   𝑠  𝑖 ∙    𝑠|  √    𝑠      𝑠   , 

in formula 
    𝜎 ∙  𝑠∙  

𝑟   𝜎  is the norm and   𝑠 is the 
argument (’angle’) of   . 
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‘Frequency’ of the complex exponential function 

Functions 

 →   ∙  ∙𝒇∙ ,    ,   ℝ 

have an important role in the topic of Fourier series and Fourier 

transforms. 

Function  →   ∙  ∙ ,   ℝ is 
1-periodic. 

The range of function 

 →   ∙  ∙ ,   [0, ] 

is the unit circle of the complex 
plane. 
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The period of function  →   ∙𝒇∙  ∙  is    / . 

Considering  →   ∙𝑓∙  ∙  as a ’position-time function’ in the complex plane 
   /  can be called ‘rotational frequency’ which gives the number of 
rotations per second. 

 →   ∙  ∙𝟐∙ ,     [0, ]  →   ∙  ∙𝟑∙ ,     [0, ] 

  

Remark: Since ω   𝜋 ∙  , we can write   ∙𝒇∙𝟐𝝅∙    ∙𝝎∙  as well. 
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For fixed 𝑁, the following values of the complex exponential function are 

used when calculating the discrete Fourier transform: 

  ∙  ∙ ∙
 
 ,       0, ,  ,𝑁    

𝑘 values give the different ‘rotational frequencies’ 

 

 
 [0, ] values are ‘discrete’ time values 
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Example 

Plot values   ∙  ∙𝒌∙
𝑛

6 ,   0, ,5 for 𝑘   , ,  on the complex plane. 

Case 𝑘   ,   0, ,5 Case 𝑘   ,   0, ,5 
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Case 𝑘   ,   0, ,5 

 

  

1

Im

1

t

0

1

6

1
6

2
6

3
6

4
6

5

6

2
2i

e
 

6

5
32i

6

3
32i

6

1
32i

e

e

e







=

=







6

4
32i

6

2
32i

032i

e

e

e







=

=









ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – Part I – © Imre KOCSIS, University of Debrecen – page 47 

Example: Show that 

   ∙  ∙
 
6

5

   

 0 

   ∙  ∙
 
6

5

   

      ∙
  
6    ∙

4 
6    ∙

6 
6    ∙

8 
6    ∙

   
6   

      ∙
 
3    ∙

  
3    ∙    ∙

4 
3    ∙

5 
3   

   (   
𝜋

 
 𝑖 ∙    

𝜋

 
)  (   

 𝜋

 
 𝑖 ∙    

 𝜋

 
)   

     𝜋  𝑖 ∙    𝜋  (   
4𝜋

 
 𝑖 ∙    

4𝜋

 
)  (   

5𝜋

 
 𝑖 ∙    

5𝜋

 
)   

   
 

 
 𝑖 ∙

√ 

 
 

 

 
 𝑖 ∙

√ 

 
   

 

 
 𝑖 ∙

√ 

 
 

 

 
 𝑖 ∙

√ 

 
 0 

Remark: It can be proven that ∑   ∙  ∙
𝑛

𝑁   
    0 holds for all positive integers 𝑁. 
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The Concept of Hilbert Spaces 

Let   be a real or complex linear space. A function 〈 〉:  ×  → ℂ is called 
inner product if 

ℝ ∋ 〈 ,  〉 ≥ 0,   〈 ,  〉  0 ⟺    0  

〈 , 𝑦〉  〈𝑦,  〉∗ conjugate symmetry 

〈𝜆 ∙  , 𝑦〉  𝜆 ∙ 〈 , 𝑦〉 homogeneity in the first argument 

〈  𝑦, 𝑧〉  〈 , 𝑧〉  〈𝑦, 𝑧〉 additivity in the first argument 

hold for all  , 𝑦, 𝑧    and 𝜆  ℂ. 

 ∗ denotes the complex conjugate of   ℂ. 

Remark 

Further properties that follow from the definition 

〈 , 𝜆 ∙ 𝑦〉  〈𝜆 ∙ 𝑦,  〉∗   𝜆 ∙ 〈𝑦,  〉 ∗  𝜆∗ ∙ 〈𝑦,  〉∗  𝜆∗ ∙ 〈 , 𝑦〉 

conjugate homogeneity in the second argument 

〈 , 𝑦  𝑧〉  〈𝑦  𝑧,  〉∗  〈𝑦,  〉∗  〈𝑧,  〉∗  〈 , 𝑦〉  〈 , 𝑧〉 

additivity in the second argument 



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – Part I – © Imre KOCSIS, University of Debrecen – page 49 

Remark: If the inner product is defined as a real-valued function 
〈 〉:  ×  → ℝ then symmetry 〈 , 𝑦〉  〈𝑦,  〉 holds. 

 

The pair   , 〈 〉  is called inner product space. 

An inner product space   , 〈 〉  is called Hilbert space if   is a complete 
metric space with respect to the distance function induced by the inner 
product. 

Remark 

Each Hilbert space   , 〈 〉  is a normed space with the norm 

‖ ‖  √〈 ,  〉,      . 

The value of inner product characterizes 
the ‘similarity’ of elements in a Hilbert 
space. 

The higher the value of the inner product 
is, the more ‘similar’ the two elements are. 
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Finite Dimensional Hilbert spaces 

A Hilbert space   , 〈 〉  is finite dimensional if   is a finite dimensional 
linear space. 

Let   be a positive integer and suppose that   is an  -dimensional Hilbert 
space. 

A system of vectors {𝑏 ,  , 𝑏 } ⊂  , 𝑘  ℕ is orthogonal if its elements are 
pairwise orthogonal. 

The system is orthonormal if orthogonal and normed, that is, the elements 
are unit vectors. 

If an orthogonal (orthonormal) system {𝑏 ,  , 𝑏 } ⊂   is a basis of  , it is 
called orthogonal (orthonormal) basis of  . 
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Orthonormal bases have important role in Hilbert spaces: 

if {𝑏 ,  , 𝑏 } ⊂   is an orthonormal basis of   and     then 

   〈 , 𝑏 〉 ∙ 𝑏 

 

   

. 

This sum is also called the decomposition     with respect to the 
orthonormal basis {𝑏 ,  , 𝑏 }. 

The coefficients 

〈 , 𝑏 〉,     𝑖   , . . ,   

are the coordinates of     with respect to the orthonormal basis 
{𝑏 ,  , 𝑏 }. 

Remark: the statement above is not true for arbitrary bases. 

  



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – Part I – © Imre KOCSIS, University of Debrecen – page 52 

The space of real n-tuples 

ℝ  is a  -dimensional Hilbert space with the inner product 

〈 , 𝑦〉     ∙ 𝑦 

 

   

,        ,  ,     ℝ , 𝑦   𝑦 ,  , 𝑦   ℝ  . 

     ,  ,     ℝ  and  𝑦   𝑦 ,  , 𝑦   ℝ  are called orthogonal if 

〈 , 𝑦〉     ∙ 𝑦 

 

   

 0. 

The ‘natural’ orthonormal basis is in ℝ  is {(

 
0
⋮
0

) ,(

0
 
⋮
0

) , . . . , (

0
0
⋮
 

)} 

which is {(
 
0
0
) , (

0
 
0
) , (

0
0
 
)} in ℝ3 and {(

 
0
) , (

0
 
)} in ℝ . 
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The space of complex n-tuples 

ℂ  (which is an  -dimensional linear space over ℂ) is a Hilbert space with 
the inner product 

〈 , 𝑦〉     ∙ 𝑦 
∗

 

   

,        ,  ,     ℂ , 𝑦   𝑦 ,  , 𝑦   ℂ  . 

     ,  ,     ℂ  and 𝑦   𝑦 ,  , 𝑦   ℝ  are called orthogonal if 

〈 , 𝑦〉     ∙ 𝑦 
∗

 

   

 0. 
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The Hilbert space of square integrable functions 

Orthogonality and Similarity of Functions 
Let 𝐼 be an interval. A function  : 𝐼 → ℂ is square integrable if 

∫|    | 

𝐼

< ∞. 

| | denotes the magnitude (norm) of a complex number. The space of the 
square integrable functions defined on 𝐼 is denoted by 𝐿  𝐼 . 

Remark 

A real valued function  : 𝐼 → ℝ is square integrable if ∫   
𝐼

< ∞. 

Remark 

Square integrable functions are mathematical representations of finite 
energy signals. 
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The inner product of functions   𝐿  𝐼  and 𝜓  𝐿  𝐼  is 

〈 , 𝜓〉  ∫  ∙ 𝜓∗

𝐼

 ∫     ∙ 𝜓∗   

𝐼

𝑑 . 

Remark 

If   𝐿  𝐼  and 𝜓  𝐿  𝐼  are real-valued functions then 𝜓∗  𝜓, and we can 
write 

〈 , 𝜓〉  ∫  ∙ 𝜓

𝐼

 ∫     ∙ 𝜓   

𝐼

𝑑 . 

The norm of function   𝐿  𝐼  is 

‖ ‖  √〈 ,  〉  √∫  ∙  ∗
𝐼

 √∫ | | 
𝐼

. 

Remark 

If   𝐿  𝐼  is a real-valued function we can write ‖ ‖  √∫   
𝐼

. 
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Functions   𝐿  𝐼  and 𝜓  𝐿  𝐼  are orthogonal if 

〈 , 𝜓〉  ∫  ∙ 𝜓∗ 

𝐼

 0. 

Remark 

The real-valued functions   𝐿  𝐼  and 𝜓  𝐿  𝐼  are orthogonal if 

〈 , 𝜓〉  ∫  ∙ 𝜓 

𝐼

 0. 

Remark 

The value of the inner product characterizes the ‘similarity’ of the functions. 
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Example 

Functions in 𝐿  [0, 𝜋]  

          ,           ,  

 3         ,  4         ,   [0, 𝜋] 

are pairwise orthogonal, that is, 〈  ,  𝑗〉  0 if 𝑖 ≠ 𝑗. 

Furthermore, the norm of all the four functions is √𝜋. 

〈 , 𝜓〉  ∫  ∙ 𝜓

𝐼

 

Calculation of 〈  ,  4〉 and 〈 3,  4〉 is as follows 

〈  ,  4〉  ∫     ∙      
  

 
𝑑  [ 

 

3
∙    3       ]

 

  
 0  

Details of the integration: 

∫     ∙      𝑑  ∫     ∙              𝑑  ∫     ∙           𝑑    

   ∫     ∙      𝑑  ∫     𝑑   
 

3
∙    3         
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〈 3,  4〉  ∫      ∙      

  

 

𝑑  [ 
 

8
∙    4 ]

 

  

 0 

Details of the integration: 

∫     ∙      𝑑  
 

 
∫    4 𝑑   

 

8
∙    4  

‖ ‖  √∫   

𝐼

 

Calculation of squared norms: 

‖  ‖
  ∫      

  

 

𝑑  
 

 
∙ ∫          

  

 

𝑑  
 

 
∙ [  

 

 
∙      ]

 

  

 𝜋 

‖  ‖
  ∫      

  

 

𝑑  
 

 
∙ ∫          

  

 

𝑑  
 

 
∙ [  

 

 
∙      ]

 

  

 𝜋 
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‖ 3‖
  ∫       

  

 

𝑑  
 

 
∙ ∫       4  

  

 

𝑑  
 

 
∙ [  

 

4
∙    4 ]

 

  

 𝜋 

‖ 4‖
  ∫       

  

 

𝑑  
 

 
∙ ∫       4  

  

 

𝑑  
 

 
∙ [  

 

4
∙    4 ]

 

  

 𝜋 

 

Thus ‖  ‖  √𝜋, 𝑖   , , ,4. 
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Example: Consider the following functions 
in 𝐿  [0, 𝜋] : 

 

𝜓         ,   [0, 𝜋] 
 

      {
      [0,

𝜋

 
[

       [
𝜋

 
, 𝜋]

 

 

      {
      [0,

𝜋

4
[       [

𝜋

 
,
 𝜋

4
[

       [
𝜋

4
,
𝜋

 
[       [

 𝜋

4
, 𝜋]

 

 

 3    {
      [0,

𝜋

 
[       [

 𝜋

 
, 𝜋]

       [
𝜋

 
,
 𝜋

 
[

 

 



2

0

1

1−



2

0

1

1−



2

0

1

1−

4



4

3


2

0

1

1−

3

2
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Calculate the inner product of 𝜓 with   ,    and  3, respectively, and compare the 
similarity of 𝜓 with the three functions. 

The inner products: 

〈  , 𝜓〉  ∫      ∙ 𝜓   

 

 

𝑑  ∫      

 
 

 

𝑑  ∫      

 

 
 

𝑑   
 

 
∙ [     ] 

 
  

 

 
∙ [     ] 

 

    

〈  , 𝜓〉  ∫      ∙ 𝜓   

 

 

𝑑  ∫      

 
4

 

𝑑  ∫      

 
 

 
4

𝑑  ∫      

3 
4

 
 

𝑑  ∫      

 

3 
4

𝑑  0 

〈 3, 𝜓〉  ∫  3   ∙ 𝜓   

 

 

𝑑  ∫      

 
3

 

𝑑  ∫      

  
3

 
3

𝑑  ∫      

 

  
3

𝑑    

That is, 0  〈  , 𝜓〉 < 〈 3, 𝜓〉 < 〈  , 𝜓〉. 

This result implies that the similarity is the highest between    and 𝜓, while    
and 𝜓 are not similar (actually, they are orthogonal). 
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Exercise 

Show that functions 

         (
6𝜋

 
∙  )       d              (

6𝜋

 
∙  ) 

are orthogonal in 𝐿  [0,  ]  space. 

Give the norm of   . 

〈  ,   〉  ∫(   (
6𝜋

 
∙  ) ∙    (

6𝜋

 
∙  ))

 

 

𝑑  
 

 
∙ ∫    (

  𝜋

 
∙  )

 

 

𝑑   

  
 

 
∙

 

  𝜋
∙ [   (

  𝜋

 
∙  )]

 

 

  
 

 4𝜋
∙       0 

‖  ‖
  ∫    (

6𝜋

 
∙  )

 

 

𝑑  
 

 
∙ ∫      (

  𝜋

 
∙  )

 

 

𝑑  
 

 
∙ [  

 

  𝜋
∙    (

  𝜋

 
∙  )]

 

 

 
 

 
 

‖  ‖  √ /  
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Example 

Show that functions 

      
 

√ 
∙   ∙

6 
 

∙       d           
 

√ 
∙   ∙

   
 

∙  

are orthogonal in 𝐿  [0,  ]  space. Give the norm of   . 

〈 , 𝜓〉  ∫  ∙ 𝜓∗

𝐼

 

〈  ,   〉  ∫(
 

√ 
∙   ∙

6 
 

∙ ∙
 

√ 
∙ 𝒆 𝒊∙

𝟏𝟎𝝅
𝑻

∙𝒕)

 

 

𝑑  
 

 
∙ ∫   ∙

 4 
 

∙ 

 

 

𝑑   

 
 

 
∙

 

𝑖 ∙
 4𝜋
 

∙ [  ∙
 4 
 

∙ ]
 

 

 
  

4𝜋 ∙ 𝑖
∙ (  4 ∙   )  0 
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‖ ‖  √〈 ,  〉  √∫  ∙  ∗

𝐼

 

‖  ‖
  ∫(

 

√ 
∙   ∙

   
 

∙ ∙
 

√ 
∙ 𝒆 𝒊∙

𝟏𝟎𝝅
𝑻

∙𝒕)

 

 

𝑑  ∫
 

 

 

 

𝑑    
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Orthonormal Systems 

Let 𝐼 be an interval. A sequence of functions { 𝑗}𝑗 ℕ
⊂ 𝐿  𝐼  is orthonormal 

if its elements are pairwise orthogonal and the norm of each element is 1. 

An orthonormal sequence is also called orthonormal system. 

 

The Fourier coefficients of a function   𝐿  𝐼  with respect to the 

orthonormal system { 𝑗}𝑗 ℕ
⊂ 𝐿  𝐼  are 

    〈 ,   〉  ∫  ∙   
∗

𝐼

,   𝑘  ℕ 
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The series of functions 

ℱ𝒮        ∙   

 

   

  〈 ,   〉 ∙   

 

   

 

is called the Fourier series of   with respect to the orthonormal system 

{ 𝑗}𝑗 ℕ
.  

 

Connection between   𝐿  𝐼  and ℱ𝒮    is important question in the 
Fourier theory.  

From the point of view of engineering practice, it is generally enough to 
know that the Fourier series of a piecewise continuous function 

− converges to the value of the function at every point   where the function 
is continuous and 

− converges to the midpoint of the discontinuity (the average of the left- 
and right-hand limits) wherever the function is discontinuous. 
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The Parseval equality 

‖ ‖   |   |
 

 

    

 

states that the square norm of a function (energy content of a signal) can be 
calculated directly from its Fourier coefficients. 
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The Trigonometric System 

The Orthonormal Trigonometric System 

Let  > 0. System of functions 

{CONST    
 

√ 
, COS      

√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  ) , SIN     

√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  )}

k ℕ

 

is orthonormal in 𝐿  [0,  ] . 

 -periodic functions 

 →
√ 

√ 
∙    (

 𝜋

 
∙  )      d    →

√ 

√ 
∙    (

 𝜋

 
∙  ) 

of ‘frequency’    
 

 
 are called the basic functions of the system, while  /𝑘-periodic 

functions 

 →
√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  ) ,      →

√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  ) ,   𝑘   , ,   

of frequency 𝑘 ∙    𝑘/  are the harmonics. 
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The Fourier series of a function   𝐿  [0,  ]  with respect to the orthonormal 
trigonometric system is 

ℱ𝒮       �̂� ∙ CONST   �̂� ∙ COS    

 

   

  �̂� ∙ SIN    

 

   

, 

where 

�̂�  〈 , CONST〉  ∫    ∙ CONST   

 

 

𝑑  ∫    ∙
 

√ 

 

 

𝑑  

�̂�  〈 , COS 〉  ∫    ∙ COS    

 

 

𝑑  ∫    ∙ (
√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  ))

 

 

𝑑 ,   𝑘   , ,   

�̂�  〈 , SIN 〉  ∫    ∙ SIN    

 

 

𝑑  ∫    ∙ (
√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  ))

 

 

𝑑 ,   𝑘   , ,   

�̂� , �̂�  and �̂� , 𝑘   , ,   are the Fourier coefficients of   with respect to the 
orthonormal trigonometric system. 
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Remark 

When calculating the Fourier coefficients of a  -periodic function we can take the 
integrals on any interval of length  . 

E.g. we often do the calculations on interval [ 
 

 
,
 

 
]. 

 

Remark 

If function   is odd, then �̂�  0, 𝑘  0, , ,    

(no constant or cos function in the decomposition = in the Fourier series) 

If   is even, then �̂�  0, 𝑘   , ,   

(no sin function in the decomposition = in the Fourier series) 

 

The Parseval’s equality in the case of the orthonormal trigonometric system is 

‖ ‖  ∫  

 

 

 �̂� 
   �̂� 

 

 

   

  �̂� 
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In the special case    𝜋 the orthonormal trigonometric system is 

{CONST    
 

√ 𝜋
, COS      

 

√𝜋
∙     𝑘 ∙   , SIN     

 

√𝜋
∙     𝑘 ∙   }

  ℕ

 

and the Fourier coefficients of   are 

�̂�  ∫     ∙
 

√ 𝜋

  

 

𝑑  

�̂�  ∫     ∙ ( 
 

√𝜋
∙     𝑘 ∙   )

  

 

𝑑 ,   𝑘   , ,   

�̂�  ∫     ∙ (
 

√𝜋
∙     𝑘 ∙   )

  

 

𝑑 ,   𝑘   , ,   
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Example 

Let  > 0. Show that the system of functions 

{CONST    
 

√ 
, COS      

√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  ) , SIN     

√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  )}

k ℕ

 

is orthonormal in 𝐿  [0,  ] . 

Solution 

∫CONST    

 

 

𝑑  ∫
 

 

 

 

𝑑    

∫COS 
    

 

 

𝑑  ∫
 

 
∙     (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑  
 

 
∙ ∫ (     (𝑘 ∙

4𝜋

 
∙  ))

 

 

𝑑   

 
 

 
∙ [  

 

4𝜋 ∙ 𝑘
∙    (𝑘 ∙

4𝜋

 
∙  )]

 

 

   

∫SINC 
    

 

 

𝑑  ∫
 

 
∙     (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑  
 

 
∙ ∫ (     (𝑘 ∙

4𝜋

 
∙  ))

 

 

d   
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∙ [  

 

4𝜋 ∙ 𝑘
∙    (𝑘 ∙

4𝜋

 
∙  )]

 

 

   

∫COS    ∙ SIN    

 

 

𝑑  
 

 
∙ ∫    (𝑘 ∙

 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  )

 

 

𝑑   

 
𝑘

𝑘    
∙
 

 𝜋
∙ [   (𝑘 ∙

 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  )]

 

 

  

 
 

𝑘    
∙
 ∙  

 𝜋
∙ [   (𝑘 ∙

 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  )]

 

 

  

 
𝑘

𝑘    
∙
 

 𝜋
∙      𝑘 ∙  𝜋 ∙      ∙  𝜋     0 ∙    0   

 
 

𝑘    
∙
 ∙  

 𝜋
∙      𝑘 ∙  𝜋 ∙      ∙  𝜋     0 ∙    0  0 
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Details of the integration: 

∫   (𝑘 ∙
 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  ) 𝑑   

[
 
 
 
 𝑔       ( ∙

 𝜋

 
∙  ) ⟹ 𝑔′     ∙

 𝜋

 
∙    ( ∙

 𝜋

 
∙  )

 ′       (𝑘 ∙
 𝜋

 
∙  ) ⟹      

 

𝑘 ∙
 𝜋
 

∙    (𝑘 ∙
 𝜋

 
∙  )

]
 
 
 
 

 

 
 

𝑘 ∙
 𝜋
 

∙    (𝑘 ∙
 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  )  

 

𝑘
∙ ∫    (𝑘 ∙

 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  ) 𝑑   

[
 
 
 
 𝑔       ( ∙

 𝜋

 
∙  ) ⟹ 𝑔′      ∙

 𝜋

 
∙    ( ∙

 𝜋

 
∙  )

 ′       (𝑘 ∙
 𝜋

 
∙  ) ⟹       

 

𝑘 ∙
 𝜋
 

∙    (𝑘 ∙
 𝜋

 
∙  )

]
 
 
 
 

 

 
 

𝑘 ∙
 𝜋
 

∙    (𝑘 ∙
 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  )   

 
 

𝑘
∙ ( 

 

𝑘 ∙
 𝜋
 

∙    (𝑘 ∙
 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  )  

 

𝑘
∙ ∫    (𝑘 ∙

 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  ) 𝑑 )   
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𝑘 ∙
 𝜋
 

∙    (𝑘 ∙
 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  )   

 
 

𝑘 ∙
 𝜋
 

∙    (𝑘 ∙
 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  )  

  

𝑘 
∙ ∫    (𝑘 ∙

 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  ) 𝑑  

(  
  

𝑘 
) ∙ ∫    (𝑘 ∙

 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  ) 𝑑   

 
 

𝑘 ∙
 𝜋
 

∙    (𝑘 ∙
 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  )  

 

𝑘 ∙
 𝜋
 

∙    (𝑘 ∙
 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  ) 

∫   (𝑘 ∙
 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  ) 𝑑   

 
𝑘

𝑘    
∙
 

 𝜋
∙    (𝑘 ∙

 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  )  

 

𝑘    
∙
 ∙  

 𝜋
∙    (𝑘 ∙

 𝜋

 
∙  ) ∙    ( ∙

 𝜋

 
∙  ) 

We can show similarly that if 𝑘 ≠   then 

∫SIN    ∙ SIN    

 

 

𝑑  0       d     ∫ COS    ∙ COS    

 

 

𝑑  0 
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Example 

Calculate the Fourier coefficients of the  𝜋-periodic 
function   defined as 

      ,      𝜋 ≤  < 𝜋 

with respect to the orthonormal trigonometric system. 

Use the Parseval’s equality to give the sum ∑
 

 2
 
   . 

 
Solution 

Since function   is odd, �̂�  0, 𝑘  0, , ,   

�̂�  ∫  ∙ (
 

√𝜋
∙     𝑘 ∙   )

 

  

𝑑  
 

√𝜋
∙ [ 

 

𝑘
∙  ∙     𝑘 ∙    

 

𝑘 
∙     𝑘 ∙   ]

  

 

  

 
 

√𝜋
∙ (( 

 

𝑘
∙ 𝜋 ∙     𝑘 ∙ 𝜋  

 

𝑘 
∙     𝑘 ∙ 𝜋 )  (

 

𝑘
∙ 𝜋 ∙     𝑘 ∙ 𝜋  

 

𝑘 
∙     𝑘 ∙ 𝜋 ))   

 
 

√𝜋
∙ ( 

 

𝑘
∙ 𝜋 ∙     𝑘 ∙ 𝜋 )   ∙ √𝜋 ∙      + ∙

 

𝑘
 

  

 𝜋 𝜋

𝜋
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Details of the calculation (integration by parts): 

∫ ∙     𝑘 ∙   𝑑   
 

𝑘
∙  ∙     𝑘 ∙    

 

𝑘
∙ ∫     𝑘 ∙   𝑑   

 

𝑘
∙  ∙     𝑘 ∙    

 

𝑘 
∙     𝑘 ∙    

[
𝑔     ⟹ 𝑔′     

 ′        𝑘 ∙   ⟹       
 

𝑘
∙     𝑘 ∙   

] 

According to the Parseval’s equality 

‖ ‖  ∫   

 

  

𝑑   �̂� 
 

 

   

 4𝜋 ∙  
 

𝑘 

 

   

 

Since ∫   
 

  
𝑑  

 

3
∙ [ 3]  

  
 

3
∙ 𝜋3 we have 

 

 
∙ 𝜋3  4𝜋 ∙  

 

𝑘 

 

   

 

that is 

 
 

𝑘 

 

   

 
𝜋 

6
 

Example 
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Calculate the Fourier coefficients of the  -periodic 
function   defined as 

       ,       ≤  <   

with respect to the orthonormal trigonometric system.  
Solution 

Since function   is even, �̂�  0, 𝑘   , ,   

�̂�  〈 , CONST〉  ∫  ∙
 

√ 

 

  

𝑑  
 

√ 
∙
 

 
∙ [ 3]  

  
√ 

 
 

�̂�  〈 , COS 〉  ∫   ∙      𝑘 ∙ 𝜋 ∙    

 

  

𝑑   

 [
 

𝑘 ∙ 𝜋
∙   ∙     𝑘 ∙ 𝜋 ∙    

 

𝑘 ∙ 𝜋 
∙  ∙     𝑘 ∙ 𝜋 ∙    

 

𝑘3𝜋3
∙     𝑘 ∙ 𝜋 ∙   ]

  

 

  

 (
 

𝑘 ∙ 𝜋
∙     𝑘 ∙ 𝜋  

 

𝑘 ∙ 𝜋 
∙     𝑘 ∙ 𝜋  

 

𝑘3 ∙ 𝜋3
∙     𝑘 ∙ 𝜋 )   

 ( 
 

𝑘 ∙ 𝜋
∙     𝑘 ∙ 𝜋  

 

𝑘 ∙ 𝜋 
∙     𝑘 ∙ 𝜋  

 

𝑘3 ∙ 𝜋3
∙     𝑘 ∙ 𝜋 )   
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𝑘 ∙ 𝜋
∙     𝑘 ∙ 𝜋  

4

𝑘 ∙ 𝜋 
∙     𝑘 ∙ 𝜋  

4

𝑘3 ∙ 𝜋3
∙     𝑘 ∙ 𝜋  

4

𝑘 ∙ 𝜋 
∙     𝑘 ∙ 𝜋  

�̂�  {

4

𝑘 ∙ 𝜋 
   𝑘        

 
4

𝑘 ∙ 𝜋 
   𝑘     dd

 

Details of the calculation (integration by parts): 

∫  ∙      𝑘 ∙ 𝜋 ∙    𝑑  
 

𝑘𝜋
∙   ∙     𝑘 ∙ 𝜋 ∙    

 

𝑘𝜋
∙ ∫  ∙     𝑘 ∙ 𝜋 ∙   𝑑   

[
𝑔      ⟹ 𝑔′      

 ′        𝑘 ∙ 𝜋 ∙   ⟹      
 

𝑘𝜋
∙     𝑘 ∙ 𝜋 ∙   

] 

[
𝑔     ⟹ 𝑔′     

 ′        𝑘 ∙ 𝜋 ∙   ⟹       
 

𝑘𝜋
∙     𝑘 ∙ 𝜋 ∙   

] 

 
 

𝑘 ∙ 𝜋
∙   ∙     𝑘 ∙ 𝜋 ∙    

 

𝑘 ∙ 𝜋
∙ ( 

 

𝑘 ∙ 𝜋
∙  ∙     𝑘 ∙ 𝜋 ∙    

 

𝑘 ∙ 𝜋
∙ ∫     𝑘 ∙ 𝜋 ∙   𝑑 )   

 
 

𝑘 ∙ 𝜋
∙   ∙     𝑘 ∙ 𝜋 ∙    

 

𝑘 ∙ 𝜋 
∙  ∙     𝑘 ∙ 𝜋 ∙    

 

𝑘3 ∙ 𝜋3
∙     𝑘 ∙ 𝜋 ∙    
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The Trigonometric System 

Let  > 0. System of functions 

{ ,    (𝑘 ∙
 𝜋

 
∙  ) ,    (𝑘 ∙

 𝜋

 
∙  )}

  ℕ
 

is orthogonal (but not orthonormal) in 𝐿  [0,  ] . 

It is called the trigonometric system. 

The Fourier coefficients of a function   𝐿  [0,  ]  with respect to the 
trigonometric system are 

𝑎   
 

 
∙ ∫     

 

 

𝑑  

𝑎   
 

 
∙ ∫     ∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑 ,   𝑘   , ,   

�̂�  
 

 
∙ ∫     ∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑 ,   𝑘   , ,   
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The Fourier series of   with respect to the trigonometric system is 

ℱ𝒮       𝑎    𝑎  ∙    (𝑘 ∙
 𝜋

 
∙  )

 

   

  �̂� ∙    (𝑘 ∙
 𝜋

 
∙  )

 

   

 

 

Remark 

If function   is odd, then 𝑎   0, 𝑘  0, , ,    

(no constant or cos function in the decomposition = in the Fourier series) 

If   is even, then �̂�  0, 𝑘   , ,   

(no sin function in the decomposition = in the Fourier series) 

 

  



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – Part I – © Imre KOCSIS, University of Debrecen – page 82 

Using the trigonometric equality 

𝐴 ∙      𝐵 ∙      √𝐴  𝐵 ∙         ,        {
     

𝐵

𝐴
,    A ≥ 0

     
𝐵

𝐴
 𝜋,    A < 0

 

an alternative form of the Fourier series 

ℱ𝒮       �̂�   �̂� ∙    (𝑘 ∙
 𝜋

 
∙     )

 

   

, 

is obtained, where 

�̂�  𝑎  ,   �̂�  √𝑎  
  �̂� 

 , 𝑘   , ,   

and 

   

{
 
 

 
      

�̂� 

𝑎  
,    𝑎  ≥ 0

     
�̂� 

𝑎  
 𝜋,    𝑎  < 0

 

is the phase of the harmonic belonging to index 𝑘. 
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The graph of the constant function and the first four cosine and the first four sine 
functions of the trigonometric system belonging to the period   on the interval 
[0,  ] are 

 →   

 

 

 →    (
 𝜋

 
∙  ) 

 

 →    (
 𝜋

 
∙  ) 
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 →    ( ∙
 𝜋

 
∙  ) 

 

 →    ( ∙
 𝜋

 
∙  ) 

 

 →    ( ∙
 𝜋

 
∙  ) 

 

 →    ( ∙
 𝜋

 
∙  ) 

 

 →    (4 ∙
 𝜋

 
∙  ) 

 

 →    (4 ∙
 𝜋

 
∙  ) 
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In the special case    𝜋 the trigonometric system is 

{ ,     𝑘 ∙   ,     𝑘 ∙   }  ℕ 

and the Fourier coefficients are 

𝑎   
 

 𝜋
∙ ∫     

  

 

𝑑  

𝑎   
 

𝜋
∙ ∫     ∙     𝑘 ∙   

  

 

𝑑 ,   𝑘   , ,   

�̂�  
 

𝜋
∙ ∫     ∙     𝑘 ∙   

  

 

𝑑 ,   𝑘   , ,   
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Example 

Determine the Fourier coefficients of the  𝜋-periodic function   defined as 

     {
0,     0

 
 

 
  

𝜋

 
,   0 <  <  𝜋

 

 
with respect to the trigonometric system. 

Solution 

Function   is odd, so 𝑎   0, 𝑘  0, , ,   

We can get the coefficients �̂�  by integration by parts 

�̂�  
 

𝜋
∙ ∫ ( 

 

 
  

𝜋

 
) ∙     𝑘 ∙   

  

 

𝑑   

 
 

𝜋
∙ [(

 

 𝑘
  

𝜋

 𝑘
) ∙     𝑘 ∙    

 

 𝑘 
∙     𝑘 ∙   ]

 

  

  

 
 

𝜋
∙ (((

𝜋

𝑘
 

𝜋

 𝑘
) ∙     𝑘 ∙  𝜋  

 

 𝑘 
∙     𝑘 ∙  𝜋 )  ( 

𝜋

 𝑘
∙    0  

 

 𝑘 
∙    0))  

 

𝑘
 

2


−

2



2 4−2 t
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Details of the calculation (integration by parts): 

∫( 
 

 
  

𝜋

 
) ∙     𝑘 ∙   𝑑   

 

𝑘
∙ ( 

 

 
  

𝜋

 
) ∙     𝑘 ∙    

 

 𝑘
∙ ∫     𝑘 ∙   𝑑   

[
𝑔     

 

 
  

𝜋

 
⟹ 𝑔′     

 

 

 ′        𝑘 ∙   ⟹       
 

𝑘
∙     𝑘 ∙   

] 

  
 

𝑘
∙ ( 

 

 
  

𝜋

 
) ∙     𝑘 ∙    

 

 𝑘 
∙     𝑘 ∙    (

 

 𝑘
  

𝜋

 𝑘
) ∙     𝑘 ∙    

 

 𝑘 
∙     𝑘 ∙    

Since 𝑎   0, 𝑘  0, , ,   and �̂�  
 

 
, 𝑘   , ,   the Fourier series of   is 

ℱ𝒮      
    𝑘 ∙   

𝑘

 

   

. 

The sum of the first 5 terms and the sum of the first 10 terms in the Fourier series. 

 →  
    𝑘 ∙   

𝑘

5

   

 

 

 →  
    𝑘 ∙   

𝑘

  

   

 

 

t

6 4 2 0 2 4 6 8 10 12
1

1

t

6 4 2 0 2 4 6 8 10 12
1

1
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Example 

Determine the Fourier coefficients of the  𝜋-periodic function   defined as 

     {

0,    𝜋 <  < 0
 ,     0
4,   0 <  < 𝜋
 ,     𝜋

 

 
with respect to the trigonometric system. 

Give the sum of the first 4 terms and the sum of the first 8 terms in the Fourier 
series. 

Solution 

𝑎   
 

 𝜋
∙ ∫ 4

 

 

𝑑    

𝑎   
 

𝜋
∙ ∫ 4 ∙     𝑘 ∙   

 

 

𝑑  
4

𝑘 ∙ 𝜋
∙ [    𝑘 ∙   ] 

  0 

 𝜋 𝜋

4
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�̂�  
 

𝜋
∙ ∫ 4 ∙     𝑘 ∙   

 

 

𝑑  
 4

𝑘 ∙ 𝜋
∙ [    𝑘 ∙   ] 

  
4

𝑘 ∙ 𝜋
∙        𝑘 ∙ 𝜋   

We have that 

�̂�  {
8

𝑘 ∙ 𝜋
   𝑘     dd

0    𝑘        

 

writing the odd numbers 𝑘 in the form 𝑘       the Fourier series of   is 

       
8

𝜋
∙  

          ∙   

    

 

   

 

  



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – Part I – © Imre KOCSIS, University of Debrecen – page 90 

The two partial sums are 

 →    
8

  𝑘    ∙ 𝜋

4

   

∙       𝑘    ∙     →    
8

  𝑘    ∙ 𝜋

8

   

∙       𝑘    ∙    

  
 

  

t

4 3 2 1 0 1 2 3 4

1

2

3

4

t

4 3 2 1 0 1 2 3 4

1

2

3

4
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Example 

Determine the Fourier coefficients of the 8-periodic function   defined as 

     {
6    0 ≤  < 4
     4 ≤  < 8

 

 
Solution 

𝑎   
 

8
∙ ∫6

4

 

𝑑  
 

8
∙ ∫  

8

4

𝑑    

𝑎   
 

4
∙ ∫6 ∙    (𝑘 ∙

𝜋

4
∙  )

4

 

𝑑  
 

4
∙ ∫  ∙    (𝑘 ∙

𝜋

4
∙  )

8

4

𝑑   

 
6

𝑘 ∙ 𝜋
∙ [   (𝑘 ∙

𝜋

4
∙  )]

 

4

 
 

𝑘 ∙ 𝜋
∙ [   (𝑘 ∙

𝜋

4
∙  )]

4

8

 0 

�̂�  
 

4
∙ ∫6 ∙    (𝑘 ∙

𝜋

4
∙  )

4

 

𝑑  
 

4
∙ ∫  ∙    (𝑘 ∙

𝜋

4
∙  )

8

4

𝑑   

84

6
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 6

𝑘 ∙ 𝜋
∙ [   (𝑘 ∙

𝜋

4
∙  )]

 

4

 
 

𝑘 ∙ 𝜋
∙ [   (𝑘 ∙

𝜋

4
∙  )]

4

8

  

 
 6

𝑘 ∙ 𝜋
∙      𝑘 ∙ 𝜋     

 

𝑘 ∙ 𝜋
∙       𝑘 ∙ 𝜋      𝑘 ∙ 𝜋   

�̂�  {
 6

𝑘 ∙ 𝜋
   𝑘     dd

0    𝑘        

 

Writing the odd numbers 𝑘 in the form 𝑘       the Fourier series of   is 

       
 6

𝜋
∙  

   (      ∙
𝜋
4
∙  )
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Example 

Calculate the Fourier coefficient �̂�   of the  -periodic 
function   defined as 

     {
 ,    0 ≤  <  

   ,     <  <  
 

with respect to the trigonometric system.  

Solution 

�̂�   ∫    ∙      0 ∙ 𝜋 ∙   

 

 

𝑑  ∫     0𝜋 ∙   

 

 

𝑑  ∫     ∙      0𝜋 ∙   

 

 

𝑑   

  
 

 0𝜋
∙ [     0𝜋 ∙   ] 

  [
   

 0𝜋
∙      0𝜋 ∙    

 

 00𝜋 
∙      0𝜋 ∙   ]

 

 

 
 

 0𝜋
 

Details of the calculation (integration by parts): 

∫     ∙      0𝜋 ∙   𝑑   
 

 0𝜋
∙      ∙      0𝜋 ∙    

 

 0𝜋
∙ ∫      0𝜋 ∙   𝑑   

  
 

 0𝜋
∙      ∙      0𝜋 ∙    

 

 00𝜋 
∙      0𝜋 ∙    
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[
𝑔       ⟹ 𝑔′      

 ′         0𝜋 ∙   ⟹       
 

 0𝜋
∙      0𝜋 ∙   

] 

  



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – Part I – © Imre KOCSIS, University of Debrecen – page 95 

Example 

Calculate the Fourier coefficient 𝑎   of the  -periodic function   
defined as 

     | | ,      
 

 
≤  <

 

 
 

with respect to the trigonometric system. 
 

Solution 

𝑎    ∙ ∫| | ∙      ∙  𝜋 ∙   

 
 

 
 
 

𝑑  4 ∙ ∫  ∙     4𝜋 ∙   

 
 

 

𝑑   

 4 ∙ [
 

4𝜋
∙  ∙     4𝜋 ∙    

 

 6𝜋 
∙     4𝜋 ∙   ]

 

 / 

  

 4 ∙ (
 

4𝜋
∙
 

 
∙      𝜋  

 

 6𝜋 
∙      𝜋  

 

 6𝜋 
)  0 

Details of the calculation (integration by parts): 

∫ ∙     4𝜋 ∙   𝑑  
 

4𝜋
∙  ∙     4𝜋 ∙    

 

4𝜋
∙ ∫     4𝜋 ∙   𝑑   
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4𝜋
∙  ∙     4𝜋 ∙    

 

 6𝜋 
∙     4𝜋 ∙    

[
𝑔     ⟹ 𝑔′     

 ′        4𝜋 ∙   ⟹      
 

4𝜋
∙     4𝜋 ∙   

] 
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Example 

Calculate the Fourier coefficient 𝑎 9 of the 𝜋-periodic function 
  defined as 

     |    | ,      
𝜋

 
≤  <

𝜋

 
 

with respect to the trigonometric system.  
Solution 

𝑎   
 

 
∙ ∫     ∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑 , 

𝑎 9  
 

𝜋
∙ ∫|    | ∙     9 ∙  ∙   

 
 

 
 
 

𝑑  
4

𝜋
∙ ∫     ∙      8 ∙   

 
 

 

𝑑   

 
4

𝜋
∙ [

 8

   
∙     ∙      8 ∙    

 

   
∙     ∙      8 ∙   ]

 

 / 

  

 
4

𝜋
∙ (

 8

   
∙    

𝜋

 
∙     9𝜋  

 

   
∙    

𝜋

 
∙     9𝜋  

 

   
)  

 4

   ∙ 𝜋
 

Details of the calculation (integration by parts): 

 

 
𝜋

 

𝜋
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∫    ∙      8 ∙   𝑑  
 

 8
∙     ∙      8 ∙    

 

 8
∙ ∫     ∙      8 ∙   𝑑   

 
 

 8
∙     ∙      8 ∙    

 

 8
∙ ( 

 

 8
∙     ∙      8 ∙    

 

 8
∙ ∫     ∙      8 ∙   𝑑 )   

 
 

 8
∙     ∙      8 ∙    

 

  4
∙     ∙      8 ∙    

 

  4
∙ ∫     ∙      8 ∙   𝑑  

[
𝑔        ⟹ 𝑔′        

 ′         8 ∙   ⟹      
 

 8
∙      8 ∙   

] 

[
𝑔        ⟹ 𝑔′         

 ′         8 ∙   ⟹       
 

 8
∙      8 ∙   

] 

∫    ∙      8 ∙   𝑑 

 
 

 8
∙     ∙      8 ∙    

 

  4
∙     ∙      8 ∙    

 

  4
∙ ∫     ∙      8 ∙   𝑑  

(  
 

  4
) ∙ ∫     ∙      8 ∙   𝑑  

 

 8
∙     ∙      8 ∙    

 

  4
∙     ∙      8 ∙    

∫    ∙      8 ∙   𝑑  
 8

   
∙     ∙      8 ∙    

 

   
∙     ∙      8 ∙    

Example 
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Determine the period of the signal 

     6 ∙    (
 𝜋

 0
∙  )    ∙    (

 𝜋

 0
∙  ) 

and give the Fourier coefficients 𝑎  , 𝑎  , 𝑎  , 𝑎 3, �̂� , �̂� , �̂�3. 

Solution 

Period of function  → 6 ∙    (
  

  
∙  ) is 20, period of function  →   ∙    (

  

3 
∙  ) is 30. 

It is easy to see, that period of their sum is equal to the smallest common multiple of 20 
and 30, that is   60. 

Now it is evident that signal   contains two harmonic components, namely 

 → 6 ∙    (
 𝜋

 0
∙  )  6 ∙    ( ∙

 𝜋

60
∙  ) 

and 

 →   ∙    (
 𝜋

 0
∙  )    ∙    ( ∙

 𝜋

60
∙  ) 

thus �̂�3  6 and 𝑎     . All other Fourier coefficients are equal to zero. 

We can calculate the Fourier coefficients according to the formulas.   60 thus 
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�̂�3  
 

60
∙ ∫ (6 ∙    (

 𝜋

 0
∙  )    ∙    (

 𝜋

 0
∙  )) ∙    ( ∙

 𝜋

60
∙  )

6 

 

𝑑   

 
  

60
∙ ∫     (

 𝜋

 0
∙  )

6 

 

𝑑  
 4

60
∙ ∫    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  )

6 

 

𝑑   

 
  

60
∙ [

 

 
∙ (  

 0

 𝜋
∙    (

 𝜋

 0
∙  ))]

 

6 

  

 
 4

60
∙ [ 

 8

𝜋
∙    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  )  

6

5
∙    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  )]

 

6 

 6 

Details of the calculation 

∫    (
 𝜋

 0
∙  ) 𝑑  

 

 
∙ ∫     (

 𝜋

 0
∙  ) 𝑑  

 

 
∙ (  

 0

 𝜋
∙    (

 𝜋

 0
∙  )) 

∫   (
 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  ) 𝑑   

  
 0

 𝜋
∙    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  )  

 

 
∙ ∫    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  ) 𝑑   
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[
𝑔       (

 𝜋

 0
∙  ) ⟹ 𝑔′     

 𝜋

 0
∙    (

 𝜋

 0
∙  )

 ′       (
 𝜋

 0
∙  ) ⟹       

 0

 𝜋
∙    (

 𝜋

 0
∙  )

] 

[
𝑔       (

 𝜋

 0
∙  ) ⟹ 𝑔′    

 𝜋

 0
∙    (

 𝜋

 0
∙  )

 ′       (
 𝜋

 0
∙  ) ⟹      

 0

 𝜋
∙    (

 𝜋

 0
∙  )

] 

  
 0

 𝜋
∙    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  )   

 
 

 
∙ (   (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  )  

 

 
∙ ∫    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  ) 𝑑 )   

  
 0

 𝜋
∙    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  )  

 

 
∙    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  )  

4

9
∙ ∫    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  ) 𝑑  

 

5

9
∙ ∫    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  ) 𝑑   

 0

 𝜋
∙    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  )  

 

 
∙    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  ) 

∫   (
 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  ) 𝑑   

 8

𝜋
∙    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  )  

6

5
∙    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  ) 
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𝑎   
 

60
∙ ∫ (6 ∙    (

 𝜋

 0
∙  )    ∙    (

 𝜋

 0
∙  )) ∙    ( ∙

 𝜋

60
∙  )

6 

 

𝑑   

 
  

60
∙ ∫    (

 𝜋

 0
∙  ) ∙    ( ∙

 𝜋

60
∙  )

6 

 

𝑑  
 4

60
∙ ∫     (

 𝜋

 0
∙  )

6 

 

𝑑   

 
  

60
∙ [

 8

𝜋
∙    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  )  

6

5
∙    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  )]

 

6 

  

 
 4

60
∙ [

 

 
∙ (  

 5

 𝜋
∙    (

 𝜋

 5
∙  ))]

 

6 

    

Details of the calculation 

∫    (
 𝜋

 0
∙  ) 𝑑  

 

 
∙ ∫     (

 𝜋

 5
∙  ) 𝑑  

 

 
∙ (  

 5

 𝜋
∙    (

 𝜋

 5
∙  )) 

∫   (
 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  ) 𝑑  

 8

𝜋
∙    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  )  

6

5
∙    (

 𝜋

 0
∙  ) ∙    (

 𝜋

 0
∙  ) 

(for further details see the calculations above) 
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Example 

Give the spectrum of the following signal 

     0. ∙      50 ∙   5.6  4.5 ∙       50 ∙    .    .87 ∙     800 ∙    

Solution 

    50 [
𝑟𝑎𝑑

𝑠
]  ⇒     

  

 𝜋
  9.79[𝐻𝑧] 

     50 [
𝑟𝑎𝑑

𝑠
]  ⇒     

  

 𝜋
  98.95[𝐻𝑧] 

 3  800 [
𝑟𝑎𝑑

𝑠
]  ⇒   3  

 3

 𝜋
   7.  [𝐻𝑧] 

 
 

  

    9.79   =198.95

0. 

 .87

4.52

 3=127.33  
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Example 

Give the spectrum of the following signal 

      00 ∙     5.48 ∙   0.6  55 ∙     6. 8 ∙       

   ∙     7. 7 ∙      66 ∙        .9  

Solution 

   5.48 [
𝑟𝑎𝑑

𝑠
]  ⇒     

  

 𝜋
 0.87[𝐻𝑧] 

   6. 8 [
𝑟𝑎𝑑

𝑠
]  ⇒     

  

 𝜋
  [𝐻𝑧] 

 3  7. 7 [
𝑟𝑎𝑑

𝑠
]  ⇒   3  

 3

 𝜋
  . 6[𝐻𝑧] 

 4   [
𝑟𝑎𝑑

𝑠
]  ⇒   4  

 4

 𝜋
 0. 6[𝐻𝑧]  

 

  

   0.87   =1

66

 00

21

 3=1.16  

 

 4  0. 6

55
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The Exponential System 
The Orthonormal Exponential System 

Let  > 0. System of functions 

{EXP     
 

√ 
∙   ∙ ∙

  
 

∙ }
   

 

is orthonormal in 𝐿  [0,  ] . This system is called orthonormal exponential 
system. 

Remark 

In the exponential system index 𝑘 is from  , that is, there are negative indices as 
well. But negative (physical) frequencies do not exist. 

The Fourier coefficients of a function   𝐿  [0,  ]  with respect to the 
orthonormal exponential system are 

 ̂  〈 , EXP 〉  ∫     ∙ (
 

√ 
∙    ∙ ∙

  
 

∙ )

 

 

𝑑 ,     𝑘   , 
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The Fourier series (decomposition) of   is 

ℱ𝒮      ̂ ∙ EXP 

 

    

  〈 , EXP 〉 ∙ EXP 

 

    

 

Remark 

When calculating the Fourier coefficients of the  -periodic functions we can take 
the integrals on any interval of length  . 

E.g. we often do the calculations on interval [ 
 

 
,
 

 
]. 
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Example 

Show that system of functions 

{EXP     
 

√ 
∙   ∙ ∙

  
 

∙ }
   

 

is orthonormal in 𝐿  [0,  ] . 

Solution 

For arbitrary 𝑘    we have 

‖EXP ‖
  ∫(

 

√ 
∙   ∙ ∙

  
 

∙ ∙
 

√ 
∙    ∙ ∙

  
 

∙ )

 

 

𝑑  ∫
 

 

 

 

𝑑    

(we used that (  ∙𝛼)
∗
    ∙𝛼 , 𝛼  ℝ) 

For arbitrary 𝑘, 𝑙   , 𝑘 ≠ 𝑙 we have 

〈EXP , EXP𝑙〉  ∫(
 

√ 
∙   ∙ ∙

  
 

∙ ∙
 

√ 
∙    ∙𝑙∙

  
 

∙ )

 

 

𝑑  
 

 
∙ ∫   ∙   𝑙 ∙

  
 

∙ 

 

 

𝑑   

 
 

 
∙

 

𝑖 ∙  𝑘  𝑙 ∙
 𝜋
 

∙ [  ∙   𝑙 ∙
  
 

∙ ]
 

 

 
 

 𝜋 ∙ 𝑖 ∙  𝑘  𝑙 
∙ (   ∙ ∙   𝑙   )  0 
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Example 

Give the Fourier series of 10-periodic function   defined as 

     {
4,   0 <  < 5
0,   5 <  <  0
 ,     {0,5, 0}

 

 
with respect to the orthonormal exponential system. 

Solution 

 ̂  〈 , EXP 〉  ∫4 ∙
 

√ 0

5

 

𝑑  
 0

√ 0
 

If 𝑘 ≠ 0 

 ̂  〈 , EXP 〉  ∫4 ∙ (
 

√ 0
∙    ∙ ∙

  
  

∙ )

5

 

𝑑  
4

√ 0
∙

  0

 𝜋 ∙ 𝑖 ∙ 𝑘
∙ [   ∙ ∙

  
  

∙ ]
 

5

  

 
 0 ∙ 𝑖

√ 0 ∙ 𝜋 ∙ 𝑘
∙ (   ∙ ∙   )  {

 40 ∙ 𝑖

√ 0 ∙ 𝜋 ∙ 𝑘
,   𝑘     dd 

0,   𝑘        , 𝑘 ≠ 0

 

50

4

2

t

x

10
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Using the notation 𝑘   𝑙   , 𝑙    the Fourier series of   is 

ℱ𝒮           (
 40 ∙ 𝑖

√ 0 ∙ 𝜋 ∙   𝑙    
∙

 

√ 0
∙   ∙  𝑙   ∙

  
  

∙ )

 

𝑙   

  

    (
 4 ∙ 𝑖

𝜋 ∙   𝑙    
∙   ∙  𝑙   ∙

  
  

∙ )

 

𝑙   
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The Exponential System 

System of functions 

{  ∙ ∙
  
 ∙ }

   
 

is orthogonal (but not orthonormal) in 𝐿  [0,  ] . 

It is called exponential system. 

The (complex) Fourier coefficients of function   𝐿  [0,  ]  with respect to 
the exponential system are 

    
 

 
∙ ∫     ∙    ∙ ∙

  
 ∙ 

 

 

𝑑 ,   𝑘   , 

the Fourier series of   is  

ℱ𝒮        (   ∙   ∙ ∙
  
 ∙ )

 

    

. 
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Functions 

• 𝑘 → |   |, 
• 𝑘 → |   |

 , and 
• 𝑘 →        

are called amplitude spectrum, energy spectrum and phase spectrum, 
respectively. 
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Example 

Calculate the Fourier coefficient   5 of the 4-periodic 
function   defined as 

     {
 ,     <  <  
0,              [0,4[

 

with respect to the exponential system. 
 

Solution 

  5  
 

4
∙ ∫ ∙    ∙5∙

  
4

∙ 

3

 

𝑑  
 

4
∙

  

5𝜋 ∙ 𝑖
∙ [   ∙

5 
 

∙ ]
 

4

  

 
  

 0𝜋 ∙ 𝑖
∙ (   ∙     )  

  

 0𝜋 ∙ 𝑖
∙        0𝜋  𝑖 ∙       0𝜋     0 

  

 4
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Real and Complex Fourier Coefficients 

If   𝐿  [0,  ]  is a real-valued function, we have 

        
∗      𝑘    

and, consequently 

|    |  |   | ,     𝑘    

showing that the complex spectrum has symmetric nature and the fact that 
the Fourier coefficients of a real-valued function belonging to ‘negative 
frequencies’ have not independent meaning. 
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The complex spectrum can be displayed in different ways. 

We can draw a “3D” diagram showing the complex values (the real and the 
imaginary part of the coefficients), or we can plot only the values |   |, and finally 
we can plot values  ∙ |   | on the non-negative frequency axis. 

 
  

 
𝑘    

   

     

𝐼𝑚    
   

𝑘     𝑘    

    
     

𝑘    
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Consider the orthonormal trigonometric system 

{CONST    
 

√ 
, COS      

√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  ) , SIN     

√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  )}

k ℕ

 

and the orthonormal exponential system 

{EXP     
 

√ 
∙   ∙ ∙

  
 

∙ }
   

 

in 𝐿  [0,  ] . 

Since both the real and the complex Fourier coefficients  �̂� , �̂� ,  ̂   belong to 

frequency 𝑘 ∙
  

 
, they are expected to be connected. In fact 

 ̂  �̂� , 

furthermore the properties of sine, cosine and exponential functions imply that for 
𝑘   , 𝑘 > 0 we have 

 ̂  
 

√ 
∙ (�̂�  �̂� ∙ 𝑖),      ̂   

 

√ 
∙ (�̂�  �̂� ∙ 𝑖),     d   | ̂ |  

 

√ 
∙ √�̂� 

  �̂� 
 . 
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Considering the trigonometric system 

{ ,    (𝑘 ∙
 𝜋

 
∙  ) ,    (𝑘 ∙

 𝜋

 
∙  )}

k ℕ
 

and the exponential system 

{  ∙ ∙
  
 

∙ }
   

 

the connection between the real and complex Fourier coefficients  𝑎  , �̂� ,      is as 
follows: 

    𝑎  , 

furthermore, for 𝑘   , 𝑘 > 0, we have 

    
 

 
∙ (𝑎   �̂� ∙ 𝑖),          

 

 
∙ (𝑎   �̂� ∙ 𝑖),     |   |  

 

 
∙ √𝑎  

  �̂� 
 . 
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Example 

Using the Euler formula   ∙       𝑖 ∙     ,   ℝ show that 

 ̂  
 

√ 
∙ (�̂�  �̂� ∙ 𝑖) 

 ̂  
 

√ 
∙ (�̂�  �̂� ∙ 𝑖) 

and 

| ̂ |  
 

 
∙ √�̂� 

  �̂� 
 ,   𝑘   , 𝑘 > 0 

Express  ̂   ̂   and 𝑖 ∙ ( ̂   ̂  ), 𝑘   , 𝑘 > 0. 
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Solution 

Let 𝑘   , 𝑘 > 0. 

 ̂  ∫    ∙ (
 

√ 
∙    ∙ ∙

  
 

∙ )

 

 

𝑑   

 ∫    ∙
 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑  𝑖 ∙ ∫     ∙
 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑   

 
 

√ 
∙ ∫     ∙

√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑  
 

√ 
∙ 𝑖 ∙ ∫     ∙

√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑  
 

√ 
∙ �̂�  

 

√ 
∙ 𝑖 ∙ �̂�  

The sine function is odd while the cosine function is even thus 

 ̂   ∫    ∙
 

√ 
∙    ( 𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑  𝑖 ∙ ∫     ∙
 

√ 
∙    ( 𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑   

 ∫    ∙
 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑  𝑖 ∙ ∫     ∙
 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑   

 
 

√ 
∙ ∫     ∙

√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑  
 

√ 
∙ 𝑖 ∙ ∫     ∙

√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑  
 

√ 
∙ �̂�  

 

√ 
∙ 𝑖 ∙ �̂�  
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Thus 

 ̂   ̂   √ ∙ �̂� ,   𝑘   , 𝑘 > 0 

𝑖 ∙ ( ̂   ̂  )  √ ∙ �̂� ,   𝑘   , 𝑘 > 0 

 

From formula  ̂  
 

√ 
∙ �̂�  

 

√ 
∙ 𝑖 ∙ �̂�  we have that 

R ( ̂ )  
 

√ 
∙ �̂�        d    I ( ̂ )   

 

√ 
∙ �̂� , 

thus 

| ̂ |  √
 

 
∙ �̂� 

  
 

 
∙ �̂� 

  
 

√ 
∙ √�̂� 

  �̂� 
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Example 

Using the formulas obtained in the previous exercise, manipulate the Fourier series 
of a function   𝐿  [0,  ]  with respect to the orthonormal exponential system to 
get the Fourier series of   with respect to the orthonormal trigonometric system. 

Solution 

ℱ𝒮      ̂ ∙ EXP 

 

    

   ̂ ∙ (
 

√ 
∙   ∙ ∙

  
 

∙ )

 

    

  

  ( ̂ ∙
 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  ))

 

    

 𝑖 ∙  ( ̂ ∙
 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  ))

 

    

  

  ̂ ∙
 

√ 
  (( ̂   ̂  ) ∙

 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  ))

 

   

  (𝑖 ∙ ( ̂   ̂  ) ∙
 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  ))

 

   

  

 �̂� ∙
 

√ 
  (�̂� ∙

√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  ))

 

   

  (�̂� ∙
√ 

√ 
∙    (𝑘 ∙

 𝜋

 
∙  ))

 

   

  

 �̂� ∙ CONST   �̂� ∙ COS    

 

   

  �̂� ∙ SIN    
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Example 

Using the Euler formula   ∙       𝑖 ∙     ,   ℝ show that 

    
 

 
∙ (𝑎   �̂� ∙ 𝑖),      ̂   

 

 
∙ (𝑎   �̂� ∙ 𝑖),     | ̂ |  

 

 
∙ √𝑎  

  �̂� 
 . 

Solution 

Let 𝑘   , 𝑘 > 0. 

    
 

 
∙ ∫     ∙    ∙ ∙

  
 

∙ 

 

 

𝑑 

 
 

 
∙ ∫     ∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑  𝑖 ∙
 

 
∙ ∫     ∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑   

 
 

 
∙
 

 
∙ ∫     ∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑  
 

 
∙ 𝑖 ∙

 

 
∙ ∫     ∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑  
 

 
∙ 𝑎   

 

 
∙ 𝑖 ∙ �̂� . 

The sine function is odd while the cosine function is even thus 

     
 

 
∙ ∫     ∙    ( 𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑  𝑖 ∙
 

 
∙ ∫     ∙    ( 𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑   
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∙ ∫     ∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑  𝑖 ∙
 

 
∙ ∫     ∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑   

 
 

 
∙
 

 
∙ ∫     ∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑  
 

 
∙ 𝑖 ∙

 

 
∙ ∫     ∙    (𝑘 ∙

 𝜋

 
∙  )

 

 

𝑑  
 

 
∙ 𝑎   

 

 
∙ 𝑖 ∙ �̂� . 

In the formula     
 

 
∙ 𝑎   

 

 
∙ 𝑖 ∙ �̂�  we can see that R       

 

 
∙ 𝑎   and I        

 

 
∙ �̂�  

thus 

|   |  √
 

4
∙ 𝑎  

  
 

4
∙ �̂� 

  
 

 
∙ √𝑎  

  �̂� 
 . 
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Special diagrams related to the frequency spectrum in the SPM 
condition monitoring system 
In predictive maintenance of machinery the control of the propagation of failures 
in time is even more important than the determination of the current condition. 

Several graphical tools are available in SPM Condmaster software providing 
information about changes in time. 

A kind of these diagrams shows some important numerical values as a function of 
time and also the related control limits.  
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Another type of diagrams shows the change of graphs, for instance the change of 
the spectrum. 

When the amplitudes belonging to critical frequencies increase or new frequencies 
appear in the spectrum the machine or process must be checked and the root cause 
of the change must be identified to avoid the further propagation of the failure. 

A useful tool is the so-called Waterfall diagram which is a three-dimensional 
display of up to 50 vibration spectra. The different readings are displayed along an 
axis, with the latest being the nearest the viewer. 
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Change of the spectrum at a measuring point (gearbox bearing) 
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With the Compare spectrum function we can view 
more than one frequency range and/or resolution 
at a time. 

This means that we can implement a variable 
frequency range from one measuring assignment to 
another and also between measuring points. 

 

  
The Coloured Spectrum Overview is a three-dimensional view of all spectra under 
a particular measuring assignment. 

Its purpose is to simplify the process of identifying in spectra the patterns and 
trends which indicate damages. 

Signals which are always present in the machine are clearly distinguished from 
signals caused by developing damages. It provides a very good overall picture of 
machine condition development. 
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A typical online condition monitoring system with fixed transducers (paper mill). 

The current condition of bearings can be checked anytime through internet. 
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Case study: condition monitoring of a pump bearing 

  
 

The waterfall diagram below shows clearly, that the measure of amplitude 
enhancement was significant at certain frequencies. 
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Further investigations showed that the high lines matched the symptom lines 
belonging to the outer ring fault (BPFO), that is, a failure of the outer ring was 
detected.  
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The following figures show the spectrum measured 

− before outer ring fault appeared (good condition), 
− when the problem developed (defective outer ring), and 
− after installing a new bearing (good condition again). 
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Example 

The bearing fault coefficients for 
the ISO6302 bearing can be seen 
in the picture. 

The rotational speed of the shaft 
during the measurement is 
  40 𝑟𝑝𝑚.  

The sketch of the spectrum provided by SPM Condmaster Ruby is 

 
Which element of the bearing is damaged: outer ring, inner ring, ball, cage, or 
none of them? 

  

              

       d 

 00  00

 ×
 ×

 ×
4 ×



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – Part I – © Imre KOCSIS, University of Debrecen – page 136 

Solution 

The bearing fault frequencies belonging to the rotational speed of   40 𝑟𝑝𝑚  
 9 𝑟𝑝𝑠 are 

fault type coefficient rotational speed (𝑟𝑝𝑠) fault frequency (𝐻𝑧) 

outer ring 2.558 19 48.60 

inner ring 4.442 19 84.40 

ball 1.724 19 32.76 

cage 0.365 19 6.94 

The spectrum contains a frequency near to   .765 𝐻𝑧 (ball spin frequency) and 
its harmonics. It suggests that there is a fault on a ball.  
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Example 

It is known that the specific symptom of a coupling problem is a high line in the 
frequency spectrum at 2nd order.  

Determine the specific frequency belonging to the coupling problem if the 
rotational speed of the shaft is  800 𝑟𝑝𝑚. 

Solution 

The rotational speed is  800 𝑟𝑝𝑚  50 𝑟𝑝𝑠. 

The line belonging to the coupling problem is at  × 50   00 𝐻𝑧 in the frequency 
spectrum. 
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Example 

In the majority of cases the highest spectrum line is at the 1st order which belongs 
to speed of the shaft (characteristics frequency of unbalance). 

Finding the frequency of the highest energy harmonic component in the signal, the 
shaft speed can be identified. 

Give the likely value of the rotational speed of the shaft on the basis of the following 
spectrum. 

 
Solution 

The highest line in the frequency spectrum is near to 4.5 𝐻𝑧. It suggests that the 
rotational speed of the shaft is 4.5 𝑟𝑝𝑠  4.5 × 60    5 𝑟𝑝𝑚.  

              

       d 

 0  0
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Integral Transforms 
Let 𝐾: ℂ × ℝ → ℂ be a given integrable function. Function 

𝐹 𝑠  ∫    ∙ 𝐾 𝑠,   

𝑏

𝑎

𝑑 ,   𝑠  ℂ 

is called the integral transform of function  : [𝑎, 𝑏] → ℂ if the integral is convergent. 

Function 𝐾 is called kernel function. 

The formula provides different transforms for different kernel functions.  

The Fourier transform and the Laplace transform are two well-known integral 
transforms, which are frequently used in different fields of engineering and 
sciences. 

Some special transformations appear in special applications, e.g. the wavelet 
transform is important tool, for example in technical diagnostics. 

Some transformations (e.g. Fourier and wavelet) have continuous and discrete 
forms. Discrete transformations are used in discrete signal processing where only 
a sampled signal is available rather than the formula of the function (signal). 
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The Continuous Fourier Transform 
Function 

ℱ𝒯             ∫     ∙    ∙𝝎∙ 

 

  

𝑑 ,     ℝ 

is the Fourier transform of function  :ℝ → ℝ if the integral is convergent. 

The Fourier integral of  :ℝ → ℝ  is 

ℱℐ       ℱ𝒯          
 

 𝜋
∙ ∫      ∙   ∙ ∙ 

 

  

𝑑 ,     ℝ. 

Functions 

 → |     |,      → |     | ,       d    → ∠       

are called amplitude spectrum, energy spectrum and phase spectrum, respectively, 
in engineering literature. 
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Remark 

Instead of the angular frequency   frequency   can also be used as the variable in 
the formula of the Fourier transform, but some correction factors must be used in 
this case. 

Remark 

The Fourier coefficients of 
periodic functions have 
discrete nature, while the 
Fourier transform gives a 
‘continuous’ spectrum 

 

 

discrete complex spectrum
(Fourier coefficients)

periodic signals

 
 

    

   
 

 

          

 

 ,     ,     ,    ,    ,    , 

   

             

   

       

         
  
   , 𝑘   

     
 

 
       

    
  
 

  

 

    

,   ℝ

continuous complex 
spectrum

integrable signals

    

 
      ,   ℝ
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Using the Euler’s formula   ∙       𝑖 ∙     ,   ℝ we can write the Fourier 
transform of  :ℝ → ℝ as 

      ∫     ∙    ∙ ∙ 

 

  

𝑑   

 ∫     ∙       ∙   

 

    

𝑑  𝑖 ∙ ∫     ∙       ∙   

 

    

𝑑   

 ∫     ∙      ∙   

 

    

𝑑  𝑖 ∙ ∫     ∙      ∙   

 

    

𝑑  �̂� 𝝎  𝑖 ∙ �̂� 𝝎 ,     ℝ. 
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When   is even, then �̂�  0 and we have 

      ∫     ∙      ∙   

 

    

𝑑   ∙ ∫     ∙      ∙   

 

   

𝑑 ,     ℝ. 

When   is odd, then 𝑎   0 and we have 

       𝑖 ∙ ∫     ∙      ∙   

 

    

𝑑   𝑖 ∙  ∙ ∫     ∙      ∙   

 

   

𝑑 ,     ℝ. 

Integrals 

ℱ𝒯cos        ∙ ∫     ∙      ∙   

 

   

𝑑 ,       ℝ, ≥ 0 

and 

ℱ𝒯sin        ∙ ∫     ∙      ∙   

 

   

𝑑 ,       ℝ, ≥ 0 

are called the cosine Fourier transform and the sine Fourier transform of function 
 : [0,∞[→ ℝ. 
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The Fourier cosine integral of   is 

ℱℐcos       
 

𝜋
∙ ∫ ℱ𝒯cos      ∙      ∙   

 

   

𝑑 ,       ℝ,  ≥ 0, 

while the Fourier sine integral of   is 

ℱℐ𝑠         
 

𝜋
∙ ∫ ℱ𝒯sin      ∙      ∙   

 

   

𝑑 ,       ℝ,  ≥ 0. 

Remark 

Each real function  :ℝ → ℝ (having Fourier transform) can be analysed with its 
cosine and sine Fourier transform since   can be written as 

     
          

 
 

          

 
 𝑔    ℎ   ,       ℝ. 

where 𝑔 is even and ℎ is odd. 

Thus 

ℱ𝒯    ℱ𝒯 𝑔  ℱ𝒯 ℎ  ℱ𝒯cos 𝑔  𝑖 ∙ ℱ𝒯sin ℎ  



ThinkBS – Vibration Signal Analysis for Machinery Condition Monitoring – Part I – © Imre KOCSIS, University of Debrecen – page 145 

If function   is piecewise continuous then ℱℐ    is equal to   wherever   is 
continuous, and ℱℐ    is the average the left- and right-hand limits wherever   is 
discontinuous. 

 

Remark 

Since a piecewise continuous function (signal) can be reconstructed from its 
Fourier transform (through its Fourier integral) we can say that the Fourier 
transform contains all information about the function, and can be considered as an 
alternative representation. 

For instance, a vibration process can be described in the ‘time domain’ (e.g. 
vibration velocity vs. time function) and also in ‘frequency domain’ (e.g. vibration 
frequency spectrum). 

Parseval’s equality (energy of a signal): 

∫      

 

    

𝑑  
 

 𝜋
∙ ∫ |     | 

 

    

𝑑 . 
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The following table shows the Fourier transform of some functions. 

We can find some ‘dual’ properties of the Fourier transform which show how the 
Fourier transform changes (in the frequency domain) when the function is changed 
in the time domain, and vice versa. 

For 𝛼, 𝛽,  ,    ℝ 

 time domain frequency domain 

  → 𝒙 𝒕  ℱ𝒯           → �̂� 𝝎  ℱ𝒯       

linearity  → 𝛼 ·         · 𝑦    
 → 𝛼 ·        

· 𝑦     

shift in the time 
domain 

 →         →      ∙    ∙ ∙  

shift in the frequency 
domain (modulation) 

 →     ∙   ∙ 0∙   →          

scaling  →   𝛼 ∙     →
 

|𝛼|
∙   (

 

𝛼
) 

convolution  →   ∗ 𝑦      →      ∙ 𝑦     
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Example 

Determine the complex Fourier transform and the Fourier integral of the 
rectangular pulse function 

     Π    {
   | | ≤  
0   | | >  

 

Solution 

      ∫     ∙    ∙ ∙ 

 

    

𝑑  ∫    ∙ ∙ 

 

    

𝑑  [
   ∙ ∙ 

 𝑖 ∙  
]
    

 

  

 
 

 𝑖 ∙  
∙ (   ∙    ∙ )  

 

 
∙
  ∙     ∙ 

 𝑖
  ∙

    

 
  ∙       

 →      Π     →        ∙
    

 
 

 
 

 

x

3 2 1 0 1 2 3

0,2

0,6

1
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The Fourier integral of   is 

ℱℐ       
 

 𝜋
∙ ∫      ∙   ∙ ∙ 

 

    

𝑑  
 

𝜋
∙ ∫

      

 
∙   ∙ ∙ 

 

    

𝑑  
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Example 

Determine the sine and cosine Fourier transform of the of the rectangular pulse 
function 

     Π    {
   | | ≤  
0   | | >  

 

Solution 

Since   is even ℱ𝒯sin    0. 

ℱ𝒯cos        ∙ ∫     ∙      ∙   

 

   

𝑑   ∙ ∫      ∙   

 

   

𝑑   ∙
    

 
 

The Fourier cosine integral of   is 

ℱℐ       
 

𝜋
∙ ∫

    

 
∙      ∙   

 

   

𝑑  
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Example 

Determine the Fourier transform of the shifted rectangular pulse function 

     {
       ≤  ≤    
0    <         >    

 

Solution 

      ∫    ∙ ∙ 

 + 

     

𝑑  
  

𝑖 ∙  
∙ [   ∙ ∙ ]

     

 + 
 

  

𝑖 ∙  
∙ (   ∙ ∙  +     ∙ ∙    )   

 
  

𝑖 ∙  
∙    ∙ ∙ (   ∙ ∙    ∙ ∙ )   ∙    ∙ ∙

 

 
∙
  ∙ ∙     ∙ ∙ 

 𝑖

  ∙
     ∙   

 
∙    ∙  

 

     

  

 𝜋/  𝜋/ 

 𝜋

 

𝜋

 

∠      

𝜋

 𝜋
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Remark 

The unit step function      {
0     < 0
     ≥ 0

 has not Fourier transform since the 

integral 

∫    ∙ ∙ 

 

   

𝑑  ∫      ∙   

 

   

𝑑  𝑖 ∙ ∫      ∙   

 

   

𝑑  

is not convergent. 

The unit step function can be considered as the limit of function 

     {
0     < 0

  𝑎∙     ≥ 0
, 𝑎 > 0 

as 𝑎 → 0  0, thus we can define, symbolically, the ‘Fourier transform’ of unit step 

function as 𝜋 ∙ 𝛿    
 

 ∙ 
. 

This definition yields Fourier transform of further important functions. 
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Example 

Determine the Fourier transform of triangle function 

            {

   𝑖   ≤  ≤ 0
    𝑖 0 ≤  ≤  

0 𝑖 | | >  
 

using the convolution theorem ℱ𝒯  ∗ ℎ  ℱ𝒯   ∙ ℱ𝒯 ℎ . 

Solution 

We have that 

            Π ∗ Π    

where Π    {
    | | ≤  
0    | | >  

 , is the rectangular impulse function. 

Using the convolution theorem we get 

      ℱ𝒯 Π    ∙ ℱ𝒯 Π     4 ∙
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The Discrete Fourier Transform 
Let  > 0 be a fixed real number and 𝑁 be a fixed positive integer and suppose 
that values 

 [ ]   [ × ∆ ],       0, ,  , 𝑁    

of signal   are provided by a sampling process. 

The discrete Fourier transform of sampled signal  [0], . . . ,  [𝑁   ] is 

 [𝑘]    [ ] ∙    ∙ ∙ ∙
  
 

   

   

,     𝑘  0, ,  , 𝑁    

 

 [ ]      ∆ 

 [0]    0  ∆ 

 [𝑁   ]    𝑁    ∆ 

 [ ]      ∆ 

0 ∆   ∆  𝑁    ∆ 
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Remark 

Mathematically, both the input and the output of the discrete Fourier transform 
consist of 𝑁 pure numbers. 

If the sampling frequency is known, the ‘discrete spectrum’ can be determined from 
values  [0], . . . ,  [𝑁   ]. 

Consider 

•  , the sampling time, 
• 𝑁, the sample size (number of elements in the sample), 
• ∆ , time between two measurements. 
•  𝑠  𝑁/   /∆ , the sampling frequency. 

Then the frequency resolution is 

∆   /   𝑠/𝑁 

and the (possible) frequency values in the discrete spectrum are 

𝑘 × ∆ ,   𝑘  0, ,  , 𝑁    
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Example 

If the sampling frequency is  𝑠   000 𝐻𝑧, and the sample size is 𝑁   0 4, then the 
frequency resolution is 

∆  
 000

 0 4
 0.9766 

𝐻𝑧

𝑏𝑖 
 

 
 

  

 

∆  ∆  ∆ 
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Example (DFT provided by MS Excel) 

𝒌 
sampled 

signal 
𝒙[𝒌] 

excel 
output 

DFT 
𝑿[𝒌] 

|𝑿[𝒌]| 
frequency of 
components 

𝒌 ∙ ∆𝒇 

 amplitude 
spectrum 
𝟐 ∙ |𝑿[𝒌]| 

0 0,0000 0 0 0 constant   
1 -0,1306 -24 i -1,5 i 1,5 ∆𝒇 ’useful’  3 
2 5,4394 0 0 0 𝟐 ∙ ∆𝒇 frequencies 0 
3 1,0374 -64 i -4 i 4 𝟑 ∙ ∆𝒇  8 
4 -8,0025 -40 i -2,5 i 2,5 𝟒 ∙ ∆𝒇  5 
5 6,8903 0 0 0 𝟓 ∙ ∆𝒇  0 

6 -11,3740 0 0 0 𝟔 ∙ ∆𝒇  0 
7 10,0187 0 0 0 𝟕 ∙ ∆𝒇  0 
8 -1,5194 0 0 0 constant   
9 3,9285 0 0 0  7 ∙ ∆    

10 -5,8108 0 0 0  6 ∙ ∆    
11 5,0878 0 0 0  5 ∙ ∆    
12 -13,3852 40 i 2,5 i 2,5  4 ∙ ∆    
13 13,9040 64 i 4 i 4   ∙ ∆    
14 -6,9681 0 0 0   ∙ ∆    
15 7,2340 24 i 1,5 i 1,5  ∆    

∆𝒇  
 

 
 

𝑓𝑠

 
 is the frequency resolution, where   is the sampling time,  𝑠 is the 

sampling frequency, 𝑁 is the sample size. 
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For example, if the sampling frequency was  𝑠   00 [𝐻𝑧], then 

∆𝒇  
 𝑠
𝑁

 
 00 [𝐻𝑧]

 6
   ,5 [𝐻𝑧] 

(sample size is 𝑁   6 in the example). 

Thus, there are the following three frequencies in the spectrum: 

  ,5 [𝐻𝑧],      7,5 [𝐻𝑧],     50 [𝐻𝑧] 
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The discrete Fourier transform can also be calculated as a matrix multiplication. 

Introducing the notation 

𝑊     ∙
  
  

then 

   ∙ ∙ ∙
  
  𝑊 

 ∙  

and the transformation matrix is 

(

  
 

   ⋯  
 𝑊 𝑊 

 ⋯ 𝑊 
   

 𝑊 
 𝑊 

4 ⋯ 𝑊 
 ∙     

⋮ ⋮ ⋮ ⋮

 𝑊 
   𝑊 

 ∙     
⋯ 𝑊 

     2
)
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If 𝑁   , the transformation matrix is 

(
  
   

) 

If 𝑁  4, the transformation matrix is 

(

    
  𝑖   𝑖
      
 𝑖    𝑖

) 

If 𝑁  8, the transformation matrix is 

(

 
 
 
 
 

        
 𝑟  𝑖  𝑖 ∙ 𝑟    𝑟 𝑖 𝑖 ∙ 𝑟
  𝑖   𝑖   𝑖   𝑖
  𝑖 ∙ 𝑟 𝑖 𝑟   𝑖 ∙ 𝑟  𝑖  𝑟
            
  𝑟  𝑖 𝑖 ∙ 𝑟   𝑟 𝑖  𝑖 ∙ 𝑟
 𝑖    𝑖  𝑖    𝑖
 𝑖 ∙ 𝑟 𝑖  𝑟    𝑖 ∙ 𝑟  𝑖 𝑟 )

 
 
 
 
 

,     𝑟  
 

√ 
∙    𝑖  
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Calculation with the matrix: 

(

 [0]

 [ ]
⋮

 [𝑁   ]

)  

(

  
 

   ⋯  
 𝑊 𝑊 

 ⋯ 𝑊 
   

 𝑊 
 𝑊 

4 ⋯ 𝑊 
 ∙     

⋮ ⋮ ⋮ ⋮

 𝑊 
   𝑊 

 ∙     
⋯ 𝑊 

     2
)

  
 

∙ (

 [0]

 [ ]
⋮

 [𝑁   ]

) 

The inverse transformation is 

 [ ]  
 

𝑁
∙   [𝑘] ∙   ∙ ∙ ∙

  
 

   

   

 
 

𝑁
∙   [𝑘] ∙ 𝑊 

  ∙ 

   

   

  

 
 

𝑁
∙   [𝑘] ∙ (𝑊 

 ∙ )
∗

   

   

,       0, ,  , 𝑁    
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or in matrix form 

(

 [0]

 [ ]
⋮

 [𝑁   ]

)  
 

𝑁
∙

(

 
 
 

   ⋯  

 𝑊 
  𝑊 

  ⋯ 𝑊 
      

 𝑊 
  𝑊 

4 ⋯ 𝑊 
  ∙     

⋮ ⋮ ⋮ ⋮

 𝑊 
      

𝑊 
  ∙     

⋯ 𝑊 
      2

)

 
 
 

∙ (

 [0]

 [ ]
⋮

 [𝑁   ]

) 
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Fast Fourier Transform (FFT) 
Formula of DFT is 

 [𝑘]    [ ] ∙    ∙ ∙ ∙
  
 

   

   

   [ ] ∙ 𝑊 
 ∙ 

   

   

,     𝑘  0, ,  , 𝑁    

where 𝑊     ∙
2𝜋

𝑁 , or in matrix form 

(

 [0]

 [ ]
⋮

 [𝑁   ]

)  

(

  
 

   ⋯  
 𝑊 𝑊 

 ⋯ 𝑊 
   

 𝑊 
 𝑊 

4 ⋯ 𝑊 
 ∙     

⋮ ⋮ ⋮ ⋮

 𝑊 
   𝑊 

 ∙     
⋯ 𝑊 

     2
)

  
 

∙ (

 [0]

 [ ]
⋮

 [𝑁   ]

). 
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It is clear from the formulas that a DFT requires the evaluation of polynomial 

𝐴    𝑎  𝑎 ∙   𝑎 ∙    . . .  𝑎   ∙      

where 

𝑎   [0], 𝑎   [ ], . . . , 𝑎     [𝑁   ] 

on a special set 

{ ,𝑊 ,𝑊 
 , . . . ,𝑊 

   },           𝑊     ∙
  
 ,     𝑊     

which is a so-called collapse set. 

Remark 

  is a collapse set if 

|  |  
 

 
∙ | | 

or   { }, where | | denotes the number of elements in  .) 
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(

 
 

   ⋯  
 𝑊 𝑊 ⋯ 𝑊   

 𝑊 𝑊4 ⋯ 𝑊      

⋮ ⋮ ⋮ ⋮

 𝑊   𝑊      ⋯ 𝑊     2)

 
 

∙ (

𝑎 

𝑎 

⋮
𝑎   

). 

𝐴    𝑎  𝑎 ∙   𝑎 ∙    . . .  𝑎   ∙      is a polynomial of degree 𝑁   . 

To reduce the computational time (number of steps) we use recursively that 

𝐴    𝐴even  
    ∙ 𝐴odd  

   

where 𝐴even and 𝐴odd are polynomials of degree 
 

 
   

𝐴even    𝑎  𝑎 ∙   𝑎4 ∙    . . .  𝑎   ∙  
 
 
    𝑎  ∙   

 
 
  

   

 

𝐴odd    𝑎  𝑎3 ∙   𝑎5 ∙    . . .  𝑎   ∙  
 
 
    𝑎  + ∙   
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Decimation in time 

Here we suppose that 𝑁 is a power of 2. 

 [𝑘]    [ ] ∙ 𝑊 
 ∙ 

   

   

   [ ] ∙ 𝑊 
 ∙ 

   𝑠 𝑒𝑣𝑒 

   [ ] ∙ 𝑊 
 ∙ 

   𝑠 𝑜𝑑𝑑

  

   [ ∙ 𝑟] ∙ 𝑊 
 ∙𝑟∙ 

 
 
  

𝑟  

   [ ∙ 𝑟   ] ∙ 𝑊 
  ∙𝑟+  ∙ 

 
 
  

𝑟  

  

   [ ∙ 𝑟] ∙  𝑊 
 ∙ 𝑟∙ 

 
 
  

𝑟  

 𝑊 
 ∙   [ ∙ 𝑟   ] ∙  𝑊 

 ∙ 𝑟∙ 

 
 
  

𝑟  

  

   [ ∙ 𝑟] ∙ 𝑊 
 

𝑟∙ 

 
 
  

𝑟  

 𝑊 
 ∙   [ ∙ 𝑟   ] ∙ 𝑊 

 

𝑟∙ 

 
 
  

𝑟  
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Since 

𝐺[𝑘]    [ ∙ 𝑟] ∙ 𝑊 
 

𝑟∙ 

 
 
  

𝑟  

     d   𝐻[𝑘]    [ ∙ 𝑟   ] ∙ 𝑊 
 

𝑟∙ 

 
 
  

𝑟  

 

are 
 

 
 point DFTs, we have that the calculation of an 𝑁 point DFTs can be led back 

to the calculation of two 
 

 
 point DFTs: 

 [𝑘]  𝐺[𝑘]  𝑊 
 ∙ 𝐻[𝑘] 

where 𝐺[𝑘] is calculated from values  [0],  [ ],  [4], . . . ,  [𝑁   ], while 𝐻[𝑘] is 

calculated from values  [ ],  [ ],  [5], . . . ,  [𝑁   ]. 
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2-point DFT 

(
 [0]
 [ ]

)  (
  
   

) ∙ (
 [0]
 [ ]

) 
 [0]   [0]   [ ] 

 [ ]   [0]   [ ] 

  
2nd roots of the unity 

 

  

N=2
DFT
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2-point inverse DFT 

(
 [0]
 [ ]

)  
 

 
∙ (

  
   

) ∙ (
 [0]
 [ ]

) 

 [0]  
 

 
∙   [0]   [ ]  

 [ ]  
 

 
∙   [0]   [ ]  

4-point DFT 

(

 [0]

 [ ]
 [ ]
 [ ]

)  (

    
  𝑖   𝑖
      
 𝑖    𝑖

) ∙ (

 [0]

 [ ]
 [ ]
 [ ]

) 

 [0]   [0]   [ ]   [ ]   [ ] 

 [ ]   [0]  𝑖 ∙  [ ]   [ ]  𝑖 ∙  [ ] 

 [ ]   [0]   [ ]   [ ]   [ ] 

 [ ]   [0]  𝑖 ∙  [ ]   [ ]  𝑖 ∙  [ ] 
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 [0]   𝐺[0]   ∙ 𝐻[0]    [0]   [ ]   [ ]   [ ]   [0]   [ ]   [ ]   [ ] 

 [ ]   𝐺[ ]  𝑖 ∙ 𝐻[ ]    [0]   [ ]  𝑖 ∙   [ ]   [ ]   [0]  𝑖 ∙  [ ]   [ ]  𝑖 ∙  [ ] 

 [ ]   𝐺[0]   ∙ 𝐻[0]    [0]   [ ]    [ ]   [ ]   [0]   [ ]   [ ]   [ ] 

 [ ]   𝐺[ ]  𝑖 ∙ 𝐻[ ]    [0]   [ ]  𝑖 ∙   [ ]   [ ]   [0]  𝑖 ∙  [ ]   [ ]  𝑖 ∙  [ ] 

 

  

N=4
DFT

N=2
DFT

N=2
DFT
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4th roots of the unity 

 

4-point inverse DFT 

(

 [0]

 [ ]
 [ ]
 [ ]

)  
 

4
∙ (

    
 𝑖    𝑖
      
  𝑖   𝑖

) ∙ (

 [0]

 [ ]
 [ ]
 [ ]

) 

 [0]   [0]   [ ]   [ ]   [ ] 

 [ ]   [0]  𝑖 ∙  [ ]   [ ]  𝑖 ∙  [ ] 

 [ ]   [0]   [ ]   [ ]   [ ] 

 [ ]   [0]  𝑖 ∙  [ ]   [ ]  𝑖 ∙  [ ] 
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8-point DFT 

(

 
 
 
 
 
 

 [0]
 [ ]
 [ ]
 [ ]
 [4]
 [5]

 [6]
 [7])

 
 
 
 
 
 

 

(

 
 
 
 
 
 
 
 
 
 

        

 
 

√ 
∙    𝑖  𝑖

 

√ 
∙     𝑖   

 

√ 
∙     𝑖 𝑖

 

√ 
∙    𝑖 

  𝑖   𝑖   𝑖   𝑖

 
 

√ 
∙     𝑖 𝑖

 

√ 
∙    𝑖   

 

√ 
∙    𝑖  𝑖

 

√ 
∙     𝑖 

            

 
 

√ 
∙     𝑖  𝑖

 

√ 
∙    𝑖   

 

√ 
∙    𝑖 𝑖

 

√ 
∙     𝑖 

 𝑖    𝑖  𝑖    𝑖

 
 

√ 
∙    𝑖 𝑖

 

√ 
∙     𝑖   

 

√ 
∙     𝑖  𝑖

 

√ 
∙    𝑖 

)

 
 
 
 
 
 
 
 
 
 

∙

(

 
 
 
 
 
 

 [0]
 [ ]
 [ ]
 [ ]
 [4]
 [5]

 [6]
 [7])
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N=8
DFT

N=4
DFT

N=4
DFT
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N=2
DFT

N=2
DFT

N=2
DFT

N=2
DFT
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8th roots of the unity 
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Example 

Determine the discrete Fourier transform of the sampled signal. 

  0 1 2 3 

 [ ] 0 1 0 -1 

Plot the complex numbers in the complex plane appearing 
in the sums. 

 
Solution 

 [0]    [ ] ∙    ∙ ∙ ∙
  
4

3

   

   [ ]

3

   

 0    0    0 

 [ ]    [ ] ∙    ∙ ∙ ∙
  
4

3

   

   [ ] ∙    ∙ ∙
 
 

3

   

  

 0 ∙    ∙ ∙
 
   ∙    ∙ ∙

 
  0 ∙    ∙ ∙

 
   ∙    ∙3∙

 
     ∙

 
     ∙3∙

 
   

 (   ( 
𝜋

 
)  𝑖 ∙    ( 

𝜋

 
))  (   ( 

 𝜋

 
)  𝑖 ∙    ( 

 𝜋

 
))  0  𝑖  0  𝑖    ∙ 𝑖 

  

0    

 

  

 [ ]
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Values in the sum giving  [0] Values in the sum giving  [ ] 

  

 [ ]    [ ] ∙    ∙ ∙ ∙
  
4

3

   

   [ ] ∙    ∙ ∙ 

3

   

  

 0 ∙    ∙ ∙   ∙    ∙ ∙  0 ∙    ∙ ∙   ∙    ∙3∙     ∙     ∙3∙   

 (     𝜋  𝑖 ∙      𝜋 )  (      𝜋  𝑖 ∙       𝜋 )  0    0    0 

 [ ]    [ ] ∙    ∙3∙ ∙
  
4

3

   

   [ ] ∙    ∙ ∙
3 
 

3

   

  

 0 ∙    ∙ ∙
3 
   ∙    ∙ ∙

3 
  0 ∙    ∙ ∙

3 
   ∙    ∙3∙

3 
     ∙

3 
     ∙3∙

3 
   

1

Im

Re

1

1e1 4

1
02i

=
− 

1e1 4

3
02i

−=−
− 

1

Im

Re

1

ie1 4

1
12i

−=
− 

ie1 4

3
12i

−=−
− 
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 (   ( 
 𝜋

 
)  𝑖 ∙    ( 

 𝜋

 
))  (   ( 

9𝜋

 
)  𝑖 ∙    ( 

9𝜋

 
))  0  𝑖  0  𝑖   ∙ 𝑖 

Values in the sum giving  [ ] Values in the sum giving  [ ] 

  
 

𝑘 0 1 2 3 

 [𝑘] 0   ∙ 𝑖 0  ∙ 𝑖 

| [𝑘]| 0   0   

 

  

Im

Re

1

1e1 4

3
22i

=−
− 

1e1 4

1
22i

−=
− 

1

Im

Re

ie1 4

1
32i

=
− 

ie1 4

3
32i

=−
− 
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Calculation with the transformation matrix: 

(

    
  𝑖   𝑖
      
 𝑖    𝑖

) ∙ (

0
 
0
  

)  (

0
  ∙ 𝑖

0
 ∙ 𝑖

)  (

 [0]

 [ ]
 [ ]
 [ ]

) 
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Example 

Determine the discrete Fourier transform of the sampled signal 

  0 1 2 3 

 [ ] 8 4 8 0 

using the transformation matrix. 

Solution 

(

    
  𝑖   𝑖
      
 𝑖    𝑖

) ∙ (

8
4
8
0

)  (

 0
 4 ∙ 𝑖
  
4 ∙ 𝑖

)  (

 [0]

 [ ]
 [ ]
 [ ]

) 


