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Network Flow Algorithms for Discrete
Tomography

K.J. Batenburg

Summary. There exists an elegant correspondence between the problem of recon-
structing a 0–1 lattice image from two of its projections and the problem of finding
a maximum flow in a certain graph. In this chapter we describe how network flow
algorithms can be used to solve a variety of problems from discrete tomography.
First, we describe the network flow approach for two projections and several of its
generalizations. Subsequently, we present an algorithm for reconstructing 0–1 images
from more than two projections. The approach is extended to the reconstruction of
3D images and images that do not have an intrinsic lattice structure.

9.1 Introduction

The problem of reconstructing a 0–1 image from a small number of its projec-
tions has been studied extensively by many authors. Most results deal with
images that are defined on a lattice, usually a subset of Z2. Already in 1957,
Ryser studied the problem of reconstructing an m×n 0–1-matrix from its row
and column sums [19, 20]. He also provided an algorithm for finding a recon-
struction if it exists. Ryser’s algorithm is extremely efficient. In fact, it can
be implemented in linear time, O(m+ n), by using a compact representation
for the output image [5].

The problem of reconstructing a 0–1 matrix from its row and column sums
can also be modeled elegantly as a network flow problem. In 1957, Gale was the
first to describe the two-projection reconstruction problem in the context of
flows in networks, providing a completely different view from Ryser’s approach
[7]. In the latter work, there was no reference to the algorithmic techniques for
solving network flow problems. In 1956, Ford and Fulkerson published their
seminal paper on an algorithm for computing a maximum flow in a network [6],
which can be used to solve the two-projection reconstruction problem. Using
the network flow model, Anstee derived several mathematical properties of
the reconstruction problem [2].

The reconstruction problem from two projections is usually severely un-
derdetermined. The number of solutions can be exponential in the size of the
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image. In practice, the goal of tomography is usually to obtain a reconstruction
of an unknown original image, not just to find any solution that has the given
projections. If only two projections are available, additional prior knowledge
must be used. Certain types of prior knowledge can be incorporated efficiently
into the network flow approach, by using the concept of min cost flows.

A drawback of the network flow approach is that it cannot be generalized to
the case of more than two projections. The reconstruction problem is NP-hard
for any set of more than two projections [8]. Recently, an iterative approach
for reconstructing 0–1 images from more than two projections was proposed
by Batenburg [3]. In each iteration a reconstruction is computed from only
two projections, using the network flow approach. The reconstruction from the
previous iteration, which was computed using a different pair of projections,
is used as prior knowledge such that the new reconstruction resembles the
previous one.

In this chapter the network flow approach will be described, starting with
the basic two-projection case. Section 9.2 describes the basic network flow for-
mulation. In Section 9.3, the model is extended to incorporate prior knowledge
in the reconstruction procedure. Section 9.4 deals with how the network flow
approach can be made tolerant to noise and other errors. The implementation
of network flow algorithms for discrete tomography is discussed in Section 9.5.
Several highly efficient implementations of network flow algorithms are avail-
able. This section also addresses the time complexity of the relevant network
flow algorithms. The basic iterative algorithm for reconstructing from more
than two projections is described in Section 9.6. This algorithm can be gener-
alized to 3D reconstruction very efficiently, which is discussed in Section 9.7.
So far, all sections deal with lattice images. In Section 9.8, we discuss how
the algorithms from the previous sections can be adapted to the problem of
reconstructing binary images that do not have a lattice structure.

9.2 Network Flow Formulation for Two Projections

The reconstruction problems of this paper can be posed in several different
forms. We mainly consider the reconstruction of a subset F of Z2 from its
projections, but one can also formulate this problem in the context of recon-
structing binary matrices or black-and-white images. In the case of binary
matrices, the set F is represented by the set of matrix entries that have a
value of 1. If we want to display a set F ⊆ Z2 and F is contained in a large
rectangle A ⊆ Z2 (e.g., 2562 elements), it is convenient to represent F as
a black-and-white image. The white pixels correspond to the elements of F ;
the black pixels correspond to the remaining elements of A. Continuous to-
mography algorithms, such as the algebraic reconstruction technique (see, e.g.,
Chapter 7 of [17]), represent the reconstruction as a gray-level image. At sev-
eral points in this chapter, we discuss how to utilize algorithms for continuous
tomography for solving the discrete reconstruction problems. In these cases
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we use the black-and-white image representation of F , as this representation
can easily be connected with the gray-level images from continuous tomogra-
phy. Depending on the representation of the set F , points in A may also be
called entries (in the context of binary matrices) or pixels (in the context of
black-and-white images).

In this section we consider the problem of reconstructing a subset F of the
lattice Z2 from its projections in two lattice directions, v(1) and v(2). This is a
generalization of the problem of reconstructing a binary matrix from its row
and column sums.

We assume that a finite set A ⊆ Z2 is given such that F ⊆ A. We call
the set A the reconstruction lattice. As an illustration of the concept of the
reconstruction lattice, consider the representation of F as a black-and-white
image. The set A defines the boundaries of the image: All white pixels are
known to be within these boundaries.

We denote the cardinality of any finite set F by |F |. Define N0 = {x ∈
Z | x ≥ 0}. Let v(1), v(2) ∈ Z2. A lattice line is a line in Z2 parallel to either
v(1) or v(2) that passes through at least one point in Z2. Any lattice line
parallel to v(k) (k = 1, 2) is a set of the form {nv(k) + t | n ∈ Z} for t ∈ Z2.
The sets L(1) and L(2) denote the sets of lattice lines for directions v(1) and
v(2) respectively. For k = 1, 2, put L(k) = {� ∈ L(k) | � ∩ A �= ∅}. Note
that L(1) and L(2) are finite sets. We denote the elements of L(k) by �k,i for
i = 1, . . . , |L(k)|. As an example, Fig. 9.1 shows the reconstruction lattice for
A = {1, 2, 3} × {1, 2, 3}, v(1) = (1, 0), and v(2) = (1, 1). For this example, the
sets L(1) and L(2) contain three and five lattice lines, respectively.

For any lattice set F ⊆ Z2, its projection P
(k)
F : L(k) → N0 in direction

v(k) is defined as
P

(k)
F (�) = |F ∩ �| =

∑
x∈�

f(x) , (9.1)

where f denotes the characteristic function of F . The reconstruction problem
can now be formulated as follows:

Problem 1. Let v(1), v(2) be given distinct lattice directions, and let A ⊆ Z2

be a given lattice set. Let p(1) : L(1) → N0 and p(2) : L(2) → N0 be given
functions. Construct a set F ⊆ A such that P (1)

F = p(1) and P (2)
F = p(2).

Define S(k) =
∑

�∈L(k) p(k)(�). We call S(k) the projection sum for direction
v(k). Note that if F is a solution of Problem 1, we have S(k) = |F | for k =
1, 2. In Section 9.4, a generalization of Problem 1 will be described for which
the prescribed projections p(1) and p(2) may contain errors. In that case the
projection sum for direction v(1) may be different from the projection sum for
direction v(2).

With the triple (A, v(1), v(2)), we associate a directed graph G = (V,E),
where V is the set of nodes and E is the set of edges. We call G the associated
graph of (A, v(1), v(2)).
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The set V contains a node s (the source), a node t (the sink), one node
for each � ∈ L(1), and one node for each � ∈ L(2). The node that corresponds
to �k,i has label nk,i. We call the nodes nk,i line nodes.

Nodes n1,i and n2,j are connected by a (directed) edge (n1,i, n2,j) if, and
only if, �1,i and �2,j intersect in A. We call these edges point edges and denote
the set of all point edges by Ep ⊆ E. There is a bijective mapping Φ : Ep → A
that maps (n1,i, n2,j) ∈ Ep to the intersection point of �1,i and �2,j. We call
Φ the edge-to-point mapping of G. For e ∈ Ep, we call Φ(e) the corresponding
point of e and for x ∈ A, we call Φ−1(x) the corresponding edge of x.

Besides the point edges, the set E contains the subsets E1 = {(s, n1,i) | i =
1, . . . , |L(1)|} and E2 = {(n2,j, t) | j = 1, . . . , |L(2)|} of directed edges. We call
the elements of E1 and E2 the line edges of G. The complete set of edges of
G is given by E = Ep ∪ E1 ∪ E2. Figure 9.2 shows the associated graph for
the triple (A, v(1), v(2)) of Fig. 9.1.

y = 0

x = 0

y = 1

y = 2

y = 3

x− y =−2

x− y =−1

x− y = 0 x− y = 1 x− y = 2

Fig. 9.1. Example lattice: A = {1, 2, 3} × {1, 2, 3}, v(1) = (1, 0), v(2) = (1, 1).

Note that the structure of the associated graph is independent of the pro-
jections p(1) and p(2). To use the associated graph G for solving a particular
instance of the reconstruction problem, we assign capacities to the edges of
G. A capacity function for G is a mapping E → N0. We use the following
capacity function U :

for i = 1, . . . , |L(1)|; j = 1, . . . , |L(2)|; (9.2)
U((n1,i, n2,j)) = 1 ; (9.3)

U((s, n1,i)) = p(1)(�1,i) ; (9.4)

U((n2,j , t)) = p(2)(�2,j) . (9.5)

A flow in G is a mapping Y : E → R≥0 such that Y (e) ≤ U(e) for all
e ∈ E and such that for all v ∈ V \{s, t},∑

w: (w,v)∈E
Y ((w, v)) =

∑
w: (v,w)∈E

Y ((v, w)) . (9.6)
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s

n1,1 n1,2 n1,3

n2,1 n2,2 n2,3 n2,4 n2,5

t

Source node

Line edges

Line nodes

Point edges

Line nodes

Line edges

Sink node

(3,1) (2,1) (1,1) (3,2) (2,2) (1,2) (3,3) (2,3) (1,3)

y = 1 y = 2 y = 3

x− y = 2 x− y = 1 x− y = 0 x− y =−1 x− y =−2

Fig. 9.2. Associated graph G for the triple (A, v(1), v(2)) from Fig. 9.1.

The latter constraint is called the flow conservation constraint. Flows in
graphs are also known as network flows in the literature. Let Y be the set
of all flows in G. For a given flow Y ∈ Y, the size T (Y ) of Y is given by
T (Y ) =

∑
(s,v)∈E Y ((s, v)). If we consider G as a network of pipelines, carry-

ing flow from s to t, the size of a flow is the net amount of flow that passes
through the network. Due to the flow conservation constraint, we also have
T (Y ) =

∑
(v,t)∈E Y ((v, t)). The associated graph G has a layered structure:

All flow that leaves the source s must pass through the point edges. This
yields the equality T (Y ) =

∑
e∈Ep Y (e). If Y (e) ∈ N0 for all e ∈ E, we call Y

an integral flow. Note that for any integral flow Y in the associated graph G,
we have Y (e) ∈ {0, 1} for all e ∈ Ep, as the capacity of all point edges is 1.

There is an elegant correspondence between the solutions of the recon-
struction problem and the integral flows of maximal size (max flows) in the
associated graph G:

Theorem 1. Suppose that S(1) = S(2) =: T̄ . Problem 1 has a solution if, and
only if, there exists an integral flow in G of size T̄ . Moreover, there is a 1-1
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correspondence between the solutions of Problem 1 and the integral flows of
size T̄ in G.

Proof. We show first that any integral flow in G of size T̄ corresponds to a
unique solution of Problem 1. Let Y be a flow in G of size T̄ . For each e ∈ Ep,
we have Y (e) ∈ {0, 1}. Put FY = {Φ(e) | e ∈ Ep and Y (e) = 1}, where Φ
is the edge-to-point mapping of G. The set FY contains all lattice points for
which the corresponding point edge in G carries a flow of 1. We call FY the
corresponding point set of Y . We claim that FY is a solution of Problem 1. We
show that P (1)

FY
= p(1); the proof for direction v(2) is completely analogous.

From the capacity constraints on the line edges of G and the fact that
T (Y ) = S(1), it follows that all line edges of G must be filled completely by
Y . Therefore, we have Y ((s, n1,i)) = p(1)(�1,i) for all i = 1, . . . , |L(1)|. Because
of the flow conservation constraint at the line nodes of G, we have

|L(2)|∑
j=1

Y ((n1,i, n2,j)) = p(1)(�1,i) for i = 1, . . . , |L(1)| (9.7)

and, therefore,

|{Φ((n1,i, n2,j)) | Y ((n1,i, n2,j)) = 1}| = p(1)(�1,i) for i = 1, . . . , |L(1)| .
(9.8)

From the structure of G, it follows that

FY ∩ �1,i = {Φ((n1,i, n2,j)) | Y ((n1,i, n2,j)) = 1} , (9.9)

which yields P (1)
FY
(�1,i) = p(1)(�1,i) for i = 1, . . . , |L(1)|. To prove that every

flow Y of size T̄ in G corresponds to a unique solution of Problem 1, we
note that Y is completely determined by its values on the point edges of G.
Therefore, a flow Y ′ �= Y of size T̄ must be different from Y at at least one
of the point edges; hence, FY ′ �= FY .

We will now show that the mapping from flows of size T̄ in G to solu-
tions of Problem 1 is surjective. For any solution F of Problem 1, define the
corresponding flow YF :

YF ((n1,i, n2,j)) =

{
1 if Φ((n1,i, n2,j)) ∈ F ,

0 otherwise .
(9.10)

Specifying YF on the point edges completely determines the flow through
the remaining edges by the conservation of flow constraint. We call YF the
corresponding flow of F . It is easy to verify that YF satisfies all edge capacity
constraints. By definition, F is the corresponding point set of YF . We have
T (YF ) =

∑
(v,w)∈Ep Y ((v, w)) = |F |, so YF is a flow of size |F | = S(1) = T̄ .

This shows that the mapping Y → FY is a bijection. ��
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The proof of Theorem 1 shows that we can find a solution of Problem 1 by
finding an integral flow of size T̄ = S(1) = S(2) in the associated graph. This
flow is a maximum flow in G, because all line edges are completely saturated.
Finding a maximum integral flow in a graph is an important problem in
operations research, and efficient algorithms have been developed to solve
this problem; see Section 9.5.

The equivalence between the reconstruction problem for two projections
and the problem of finding a maximum flow in the associated graph was
already described by Gale in 1957 [7] in the context of reconstructing binary
matrices from their row and column sums. Theorem 1 generalizes this result
to the case of any reconstruction lattice A and any pair of lattice directions
(v(1), v(2)).

In the next sections we will see that the network flow approach can be
extended to solve more complex variants of the reconstruction problem and
that it can be used as a building block for algorithms that compute a recon-
struction from more than two projections.

9.3 Weighted Reconstruction

Problem 1 is usually severely underdetermined: The number of solutions can
be exponential in the size of the reconstruction lattice A. In practical applica-
tions of tomography, the projection data are usually obtained by measuring
the projections of an unknown object (the original object), and it is important
that the reconstruction closely resembles this object. One way to achieve this
is to use prior knowledge of the original object in the reconstruction algorithm.
One of the first attempts to incorporate prior knowledge in the network flow
approach was described in [22], in the context of medical image reconstruction.

In this section we consider a weighted version of Problem 1:

Problem 2. Let A, v(1), v(2), p(1), p(2) be given as in Problem 1. Let
W : A→ R be a given mapping, the weight map. Construct a set F ⊆ A such
that P (1)

F = p(1) and P (2)
F = p(2) and the total weight

∑
x∈F W (x) is maximal.

As a shorthand notation, we refer to the total weight of F as W (F ).
Problem 2 is a generalization of Problem 1. Through the weight map, one can
express a preference for a particular solution if the reconstruction problem
has more than one solution. This preference is specified independently for
each x ∈ A. The higher the weight W (x), the stronger is the preference to
include x in the reconstruction F . Note that a preference for image features
that involve several pixels cannot be specified directly through the weight
map.

The associated graph G can also be used to solve the weighted version of
the reconstruction problem. Define the mapping C : E → R as follows:
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C(e) =

{
−W (Φ(e)), for e ∈ Ep ,

0, otherwise .
(9.11)

The cost C(Y ) of a flow Y in G is defined as
∑

e∈E C(e)Y (e). The min cost
flow problem in G deals with finding an integral flow Y of a prescribed size
T̄ in G such that the cost C(Y ) is minimal. If we choose T̄ = S(1) = S(2),
any integral flow Y of size T̄ is a maximum flow in G and corresponds to a
solution of Problem 1. The total weight of the solution that corresponds to a
flow Y equals −C(Y ) =W (FY ). Therefore, solving the integral min cost flow
problem in G yields a solution of the reconstruction problem of maximum
weight, solving Problem 2.

Just as for the max flow problem, efficient algorithms are available for
solving the (integral) min cost flow problem. However, most such algorithms
assume that the edge costs are integer values. If the edge costs are all in Q,
we can simply multiply all edge costs by the smallest common multiple of
the denominators to obtain integer costs. If the edge costs are not in Q, the
solution of Problem 2 can be approximated by multiplying all edge costs with
a large integer and rounding the resulting costs.

In [22] Slump and Gerbrands described an application of Problem 2 to the
reconstruction of the left ventricle of the heart from two orthogonal angio-
graphic projections. They used a min cost flow approach to solve a specific
instance of Problem 2.

Having the ability to solve Problem 2 can be very helpful in solving a
variety of reconstruction problems. We will describe two such problems. These
problems deal with the reconstruction of binary images, i.e., images for which
all pixels are either black or white. Each pixel in the image corresponds to a
lattice point. A binary image corresponds to the lattice set F ⊆ A, where F
contains the lattice points of all white pixels in the image.

Example 1. As an application of Problem 2, consider an industrial production
line, where a large amount of similar objects has to be produced. Suppose
that a blueprint is available, which specifies what the objects should look like.
Occasionally, flaws occur in the production process, resulting in objects that
don’t match the blueprint. To check for errors, the factory uses a tomographic
scanner that scans the objects in two directions: horizontal and vertical. To
obtain a meaningful reconstruction from only two projections, the blueprint is
used as a model image. For each object on the factory line, the reconstruction
is computed that matches the blueprint in as many points as possible.

This problem can be formulated in the context of Problem 2. Suppose we
want to reconstruct an n×n image. Put A = {1, . . . , n} × {1, . . . , n}, v(1) =
(1, 0), and v(2) = (0, 1). Let FM be the lattice set that corresponds to the
blueprint. We want to compute the solution F of Problem 1 such that

|(F ∩ FM ) ∪ (A\F ∩A\FM )| = |A| − |F � FM | (9.12)

is maximal, where � denotes the symmetric set difference. The term F ∩FM
represents the white pixels shared by F and FM ; the term A\F ∩ A\FM
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represents the shared black pixels. To formulate this problem as an instance
of Problem 2, put

W (x) =

{
1 if x ∈ FM ,

0 otherwise .
(9.13)

The solution of Problem 2 for this weight map maximizes |F∩FM |, the number
of common elements of F and FM , subject to the constraints P (1)

F = p(1) and
P

(2)
F = p(2).
For the symmetric difference F � FM , the following equality holds:

|F � FM | = (|F | − |F ∩ FM |) + (|FM | − |F ∩ FM |) . (9.14)

Noting that |F | = S(1) is constant for all solutions of Problem 1 yields

|(F ∩ FM ) ∪ (A\F ∩A\FM )| (9.15)

= |A| − (S(1) − |F ∩ FM |)− (|FM | − |F ∩ FM |) (9.16)

= 2|F ∩ FM |+ (|A| − |FM | − S(1)) . (9.17)

The term (|A| − |FM | − S(1)) is constant, which shows that maximizing
|(F ∩ FM ) ∪ (A\F ∩ A\FM )| is equivalent to maximizing |F ∩ FM |. We con-
clude that the given weight map indeed computes the reconstruction that
corresponds to the blueprint in as many pixels as possible.

Figure 9.3(a) shows a blueprint image that represents a semiconductor
part. The white pixels correspond to the wiring; the black pixels correspond
to the background. Suppose that the object shown in Fig. 9.3(b) passes the
scanner. The object clearly contains a gap that is not present in the blueprint
and should be detected. Figure 9.3(c) shows a reconstruction computed from
the horizontal and vertical projection data of the faulty object, using the
blueprint image of Fig. 9.3(a). It has the same projections as the image in Fig.
9.3(b) and corresponds to the blueprint in as many pixels as possible. Although
the reconstruction is not perfect, the gap is clearly visible and the object
can be easily identified as faulty. For comparison, consider the image in Fig.
9.3(d), which also has the same projections as the images in Fig. 9.3(b) and
(c). This time, the reconstruction corresponds to the blueprint in as few pixels
as possible. Comparing this reconstruction to the original image of the faulty
part shows how severely underdetermined the reconstruction problem is when
only two projections are available. Of course, using a blueprint image does
not guarantee that the reconstruction resembles the scanned object, but it is
likely that the reconstruction will be much better than if no prior knowledge
is used at all.

Example 2. Another practical problem that can be formulated in the frame-
work of Problem 2 is how to obtain a 0–1 reconstruction from an already
computed real-valued reconstruction. Computing a 0–1 reconstruction from
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Fig. 9.3. (a) Blueprint image of a semiconductor part. (b) Test image, containing a
gap in one of the wires. (c) Reconstruction of the test image from the horizontal and
vertical projections, using the image from (a) as a model image. (d) Reconstruction
using an inverted version of the blueprint image as a model image.

more than two projections is a computationally hard problem, but for com-
puting a real-valued reconstruction several algorithms are available, such as
the algebraic reconstruction technique (ART, see Chapter 7 of [17]). These
algorithms typically require many projections to compute an accurate recon-
struction. Figure 9.4(a) shows an ART reconstruction of the image in Fig.
9.3(b) from six projections. If we want the reconstruction to be binary, this
reconstruction can be “rounded,” such that all pixel values less than 1/2 be-
come 0 and all pixel values of 1/2 or more become 1. The result is shown
in Fig. 9.4(b). A different way to obtain a binary reconstruction is to solve
Problem 2 using the pixel values of the original image as the weight map: the
higher the gray value of a pixel in the continuous reconstruction, the higher
the preference for this pixel to be assigned a value of 1 in the binary re-
construction. In this way the reconstruction will perfectly satisfy two of the
projections, while “resembling” the continuous reconstruction. Figure 9.4(c)
and (d) show two such reconstructions. The reconstruction in Fig. 9.4(c) was
obtained using v(1) = (1, 0), v(2) = (0, 1). For the second reconstruction, the
lattice directions v(1) = (0, 1), v(2) = (1, 1) were used. Both reconstructions
are better than the one in Fig. 9.4(b) at some features, but it is not clear
how to detect automatically which one is better, or how the two solutions
can be combined into one superior solution. In Section 9.6, we describe how
the reconstructions for different pairs of lattice directions can be combined to
compute a single, more accurate reconstruction (see Fig. 9.9).

9.4 Reconstruction from Noisy Projections

The network model from Sections 9.2 and 9.3 is only suitable for comput-
ing reconstructions from perfect projection data. In simulation experiments,
it is easy to compute perfect projections of a given image, but data that are
obtained by physical measurements are usually polluted by noise. As an ex-
ample of what happens in the network of Section 9.2, when the projection
data contain errors, consider the possibility that S(1) �= S(2). In this case, it
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Fig. 9.4. (a) ART reconstruction of the image in Fig. 9.3(b) from six projections.
(b) Rounded ART reconstruction. (c) Solution of Problem 2, using the ART recon-
struction as the weight map, for lattice directions (1, 0) and (0, 1). (d) Solution of
Problem 2 using lattice directions (0, 1) and (1, 1).

is clear that no perfect solution of the reconstruction problem exists. One can
still compute a maximum flow in the associated graph G. Due to the line arc
capacity constraints, such a flow will always have size at most min(S(1), S(2)).
If the measured projection for a line � is lower than the number of points on
that line in the original object, that line will always contain too few points
in the reconstruction, regardless of the measured line projections in the other
direction, because of the capacity constraint on the corresponding line edge
of �.

In this section we consider a modification of the associated graph which can
be used to compute a reconstruction F for which the norm of the residue, i.e.,
the difference between the projections of F and the two prescribed projections
is minimal. This network does not have the drawbacks that we described above
of the network from Section 9.2.

Let F ⊆ A. For k = 1, 2, the projections P (k)
F of F have finite domains, so

we can regard P
(k)
F as a vector of |L(k)| elements. We denote the sum-norm

of this vector by |P (k)
F |1. For a given prescribed projection p(k), the norm

|P (k)
F − p(k)|1 =

∑
�∈L(k)

|P (k)
F (�)− p(k)(�)| (9.18)

equals the total summed projection difference over all lines in L(k). Another
norm that is often used in tomography is the Euclidean norm | · |2. The sum-
norm is better suited for incorporation in the network flow approach. We now
define a generalization of Problem 1 that allows for errors in the prescribed
projections.

Problem 3. Let A, v(1), v(2), p(1), p(2) be given as in Problem 1. Let T̄ ∈ N0.
Construct a set F ⊆ A with |F | = T̄ such that |P (1)

F − p(1)|1 + |P (2)
F − p(2)|1

is minimal.

Problem 3 asks for a set F that has a prescribed number of T̄ elements
such that F corresponds as well as possible to the two prescribed projections,
according to the sum-norm. If Problem 1 has a solution, we can find all solu-
tions by putting T̄ = S(1) and solving Problem 3. We will show that Problem 3
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can be solved within the network flow model. For any n-dimensional vector
p ∈ Rn, define

|p|+ =
n∑
i=1

max(pi, 0) . (9.19)

To solve Problem 3, we need to make some modifications to the associated
graph. Before introducing the modified graph, we prove the following lemma.

Lemma 1. Let F ⊆ A, |F | = T̄ . Then, for k = 1, 2,

|P (k)
F − p(k)|1 = 2|P (k)

F − p(k)|+ + S(k) − T̄ . (9.20)

Proof. Let k ∈ {1, 2}. By definition, we have

|P (k)
F − p(k)|1 = |P (k)

F − p(k)|+ + |p(k) − P
(k)
F |+ . (9.21)

For each line � ∈ L(k), we have

P
(k)
F (�) = p(k)+max(P (k)

F (�)− p(k)(�), 0)−max(p(k)(�)−P
(k)
F (�), 0) . (9.22)

Summing this equation over all lines � ∈ L(k), it follows that

T̄ = S(k) + |P (k)
F − p(k)|+ − |p(k) − P

(k)
F |+ ; (9.23)

hence,
|P (k)
F − p(k)|1 = 2|P (k)

F − p(k)|+ + S(k) − T̄ . (9.24)

��

Lemma 1 shows that solving Problem 3 is equivalent to finding a set F
with |F | = T̄ for which

|P (1)
F − p(1)|+ + |P (2)

F − p(2)|+ (9.25)

is minimal, since S(1), S(2), and T̄ are constant.
We will now describe how the associated graph can be modified for solving

Problem 3. The network from Section 9.2 forms the basis for the new network.
From this point on we refer to the line edges of the network from Section 9.2 as
primary line edges. As before, we denote the sets of all primary line edges for
directions v(1) and v(2) by E1 and E2, respectively. Let � ∈ L(k) be any lattice
line for direction v(k), and let e ∈ Ek its corresponding primary line edge. The
capacity of e imposes a hard upper bound on the number of points on � in the
network flow reconstruction. To relax this hard constraint, we add a second
edge for each lattice line, the excess edge. The excess edges are parallel to their
corresponding primary line edges and have the same orientation. We denote
the set of excess edges for directions v(1) and v(2) by E′1 and E

′
2, respectively.
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The resulting graph G′ is shown in Fig. 9.5. The capacities of the primary
line edges remain unchanged. The excess edges have unbounded capacities.
Effectively, this means that the total flow through a primary line edge and its
corresponding excess edge — both belonging to a line � ∈ L(k) — is bounded
by |A ∩ �|, as all outgoing flow from the line edges must pass through |A ∩ �|
point edges where each has capacity 1. Therefore, it is still possible to assign
finite capacities to the excess edges.

The primary line edges of the new graph are still assigned a cost of 0, as
in the original network. The excess edges are assigned a cost of K, where K
is a positive constant. In this way it is possible to allow more points on a line
� than p(k)(�), but only at the expense of a cost increase.

Now consider the problem of finding a min cost flow in G′ of size T̄ .
Without computing such a flow, we can already be sure that any excess edge
will only carry flow if its corresponding primary line edge is saturated up to
its capacity. Otherwise, the cost could be decreased by transferring flow from
the excess edge to the primary edge.

Suppose that Y : E → Z is a min cost flow in G′ of size T̄ . The total cost
of Y , given by

C(Y ) = K(
∑
e∈E′

1

Y (e) +
∑
e∈E′

2

Y (e)) . (9.26)

Let FY be the set of points for which the corresponding point edges in Y
carry a positive flow, as in the Proof of Theorem 1. For any line � ∈ L(k),
the total flow through the primary and excess edges of � must equal P (k)

FY
(�),

because of the flow conservation constraints. Therefore, we have∑
e∈E′

k

Y (e) = |P (k)
FY
− p(k)|+ ; (9.27)

hence,
C(Y ) = K(|P (1)

FY
− p(1)|+ + |P (2)

FY
− p(2)|+) . (9.28)

Applying Lemma 1, we conclude that a min cost flow in G′ of size T̄ yields a
solution of Problem 3.

The new network can also be used to solve an extended version of Prob-
lem 2.

Problem 4. Let A, v(1), v(2), p(1), p(2) be as given in Problem 2. Let T̄ ∈ N0,
α ∈ R>0. Construct a set F ⊆ A with |F | = T̄ such that

α(|P (1)
F − p(1)|1 + |P (2)

F − p(2)|1)−
∑
x∈F

W (x) (9.29)

is minimal.

Similar to the procedure for solving Problem 2, we set C(e) = −W (Φ(e))
for all e ∈ Ep. Assuming that an excess edge only carries flow if its corre-
sponding primary line edge is completely full, the total cost of an integral
flow Y ∈ Y now becomes
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Fig. 9.5. Modified associated graph G′ for the triple (A, v(1), v(2)) from Fig. 9.1.

C(Y ) = K(|P (1)
FY
− p(1)|+ + |P (2)

FY
− p(2)|+)−

∑
x∈FY

W (x) . (9.30)

Setting K = 2α and using Eq. (9.24) yield

C(Y ) = α(|P (1)
FY
− p(1)|1 + |P (2)

FY
− p(2)|1)−

∑
x∈FY

W (x)− C0 , (9.31)

where C0 is a constant. We conclude that if Y is an integral min cost flow of
size T̄ in G′, then FY is a solution to Problem 4.

9.5 Algorithms and Implementation

As described in the previous sections, Problem 1, 2, 3, and 4 can all be solved
as instances of network flow problems. Both the max flow problem and the
min cost flow problem have been studied extensively. The book [1] provides an
overview of available algorithms. A survey of the time complexities of various
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network flow algorithms can be found in [21] (max flow: Chapter 10; min cost
flow: Chapter 12).

We now assume that the reconstruction lattice A is a square of size N×N ,
and we fix a pair (v(1),v(2)) of lattice directions. It is clear that the number of
points in A on each lattice line parallel to v(1) or v(2) is O(N). It is also clear
that the number of lattice lines parallel to v(1) or v(2) that have a nonempty
intersection with A is O(N).

Problem 1 can be solved as an instance of the max flow problem in the
associated graph. In [10], Goldberg and Rao describe an algorithm to compute
a maximum flow in a graph with n nodes, m edges, and maximum edge
capacity c inO(n2/3m log(n2/m) log c) time. The associated graph of the triple
(A, v(1), v(2)) has n = O(N) nodes, m = O(N2) edges, and a maximum edge
capacity of c = O(N). Therefore, Problem 1 can be solved in O(N8/3 logN)
time.

Problems 2 and 3 can both be solved as instances of the min cost flow
problem, i.e., the problem of finding a flow of fixed size that has minimal cost.
The min cost flow problem can be reformulated as a minimum-cost circulation
problem by adding an edge from the sink node t to the source node s; see
Section 12.1 of [21]. In [11], Goldberg and Tarjan describe an algorithm to
compute a minimum-cost circulation in a graph with n nodes, m edges, and
maximum (integral) edge cost K in O(nm log(n2/m) log(nK)) time. For the
associated graph from Section 9.3, as well as for the modified associated graph
from Section 9.4, this yields a time complexity of O(N3 log(NK)) for solving
the min cost flow problem.

The problem of finding a maximum flow in the associated graph is known
in the literature as simple b-matching. A flow that saturates all line edges
is called a perfect simple b-matching, and the weighted variant of finding a
perfect b-matching is known as perfect weighted b-matching ; see Chapter 21 of
[21]. For these particular network flow problems, special algorithms have been
developed that are sometimes faster than general network flow algorithms.

Implementing fast network flow algorithms is a difficult and time-consuming
task. The fastest way to use such algorithms is to use an existing implementa-
tion. Several network flow program libraries are available, some commercially
and some for free. The ILOG CPLEX solver [15] performs very well for a wide
range of network flow problems. The CS2 library from Goldberg [9] performs
well and is free for noncommercial use. The same holds for the RelaxIV library
from Bertsekas [4].

9.6 Extension to More Than Two Projections

As shown in the previous sections, the reconstruction problem from two pro-
jections is well understood and can be solved efficiently. We now move to the
case where more than two projections are available.
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Problem 5. Let n > 2 and let v(1), . . . , v(n) be given distinct lattice direc-
tions. Let A ⊆ Z2 be a given lattice set. For k = 1, . . . , n, let p(k) : L(k) → N0

be given functions. Construct a set F ⊆ A such that P
(k)
F = p(k) for

k = 1, . . . , n.

When more projections are available, the reconstruction problem is less un-
derdetermined and we would like to be able to use the additional projections
to increase the reconstruction quality. However, the reconstruction problem
for more than two projections is NP-hard. Therefore, we have to resort to ap-
proximation algorithms. In this section we will describe an iterative algorithm
that uses only two projections in each iteration. Within an iteration, a new
pair of projections is first selected. Subsequently, an instance of Problem 2 is
solved to obtain a reconstruction that satisfies the current two projections.
The reconstruction from the previous iteration, which was computed using
a different pair of projections, is used to construct the weight map of Prob-
lem 2 in such a way that the new reconstruction will resemble the previous
one. In this way the other projections are incorporated in the reconstruction
procedure in an implicit way.

Compute the start solution F 0;

i := 0;

while (stop criterion is not met) do
begin

i := i+ 1;

Select a new pair of directions va and vb (1 ≤ a < b ≤ n);
Compute a new weight map W i from the previous solution F i−1;

Compute a new solution F i by solving Problem 2 for
directions va and vb, using the weight map W

i;

end

Fig. 9.6. Basic steps of the algorithm.

Figure 9.6 describes the basic structure of the algorithm. In the next sub-
sections each of the steps will be described. The algorithm relies heavily on
the methods for solving two-projection subproblems, which we described in
the previous sections.

9.6.1 Computing the Start Solution

At the start of the algorithm, there is no “previous reconstruction”; a start
solution has to be computed for the iterative algorithm. Ideally, the start
solution should satisfy two criteria:
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(a) Accuracy. The start solution should correspond well to the prescribed
projection data.

(b) Speed. The start solution should be computed fast (compared with the
running time of the rest of the algorithm).

These are conflicting goals. Computing a highly accurate binary recon-
struction will certainly take too much time, as the reconstruction problem is
NP-hard.

There are several options for computing the start solutions, each having
a different tradeoff between speed and accuracy. The first option is to choose
the empty set F 0 = ∅ as a start solution, i.e., an image that is completely
black.

A better alternative is to use a very fast approximate reconstruction al-
gorithm, such as one of the greedy algorithms described in [12]. The running
time of these algorithms is comparable to the time it takes to solve a single
network flow problem in the body of the main loop of our algorithm.

A third possibility is to start with a continuous reconstruction. A binary
start solution can then be computed from the continuous reconstruction, as
described in Example 2 of Section 9.3. One class of reconstruction algorithms
that can be used consists of the algebraic reconstruction algorithms (see Chap-
ter 7 of [17]). The basic idea of these algorithms is to describe Problem 5 as
a system of linear equations:

Mx = b . (9.32)

y

x

1 2 3

4 5 6

7 8 93

2

1

4 5 6

⎛⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6
x7
x8
x9

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

b1
b2
b3
b4
b5
b6

⎞⎟⎟⎟⎟⎟⎟⎠

(a) (b)

Fig. 9.7. (a) Numbering scheme for the lattice points and the lattice lines in a
rectangular reconstruction lattice. (b) System of equations corresponding to the
numbering in (a).

Figure 9.7 shows an example 3×3 grid with the corresponding system of
equations for two directions, v(1) = (1, 0) and v(2) = (0, 1). Each entry of the
vector x represents an element of A. The entries of the vector b correspond
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to the line projections for lattice directions v(1), . . . , v(n). Each row of the
binary matrix M represents a lattice line. The entry Mij is 1 if, and only if,
its corresponding lattice line i passes through point j.

The system (9.32) is usually underdetermined. The shortest solution of
the system with respect to the Euclidean norm | · |2, which we denote as
x∗, is a good choice for a start solution in discrete tomography. It can be
shown that if Problem 5 has several solutions, then the Euclidean distance
of x∗ to any of these solutions is the same, so x∗ is “centered” between the
solutions. In addition, if the system (9.32) has binary solutions, any of these
solutions has minimal norm among all integral solutions. Therefore, a short
solution is likely to be a good start solution. We refer to [13] for the details of
these arguments. The shortest solution of (9.32) can be computed efficiently by
iterative methods, as described in [23]. After this solution has been computed,
a pair (v(a), v(b)) of lattice directions has to be selected for computing the
binary start solution. The start solution is computed by solving Problem 2,
using the pixel values in x∗ as the weight map.

9.6.2 Computing the Weight Map

In each iteration of the main loop an instance of Problem 2 is solved. The
weight map for this reconstruction problem is computed from the reconstruc-
tion of the previous iteration; it does not depend on the selected pair of lattice
directions.

The weight map should be chosen in such a way that the new recon-
struction resembles the reconstruction from the previous iteration. In the new
instance of Problem 2, only two of the projections are used. If the new recon-
struction is similar to the previous reconstruction, which was computed using
a different pair of projections, the new image will also approximately adhere
to the prescribed two projections from the previous iteration. Repeating this
intuitive argument, we would hope that the new image also satisfies the pro-
jections from the iteration before the previous one, from the iteration before
that one, etc.

The most straightforward way to make the new reconstruction resemble
the previous one is to follow the approach from Example 1 in Section 9.3. If
we put

W i((x, y)) =

{
1 if (x, y) ∈ F i−1 ,

0 otherwise ,
(9.33)

the new reconstructed image F i will have the same pixel value as F i−1 in
as many pixels as possible. Unfortunately, this choice usually does not lead
to good results. Typically, the main loop of the algorithm does not con-
verge, making it difficult to decide when the algorithm should be terminated.
This behavior is by no means surprising. The reconstruction problem from
a small number of projections is severely underdetermined. If no additional
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prior knowledge is used, a small number of projections (e.g., four or five) may
not even be nearly enough data to uniquely determine a reconstruction.

To deal with this problem, we focus on the reconstruction of images that
satisfy additional properties. Smoothness is a property that can often be ob-
served in practical images: Images consist of large areas that are completely
black or completely white, instead of exhibiting completely random pixel pat-
terns. A nice property of the smoothness concept is that it can be measured
locally. We say that an image F is perfectly smooth at pixel x ∈ A if all neigh-
boring points of x have the same value as x. Of course, this notion requires
the definition of a neighborhood of x, which we will describe below.

From this point on, we assume that the reconstruction lattice A is rectan-
gular. If this assumption is not satisfied, we can use any square reconstruction
lattice A′ for which A ⊆ A′, as increasing the size of the reconstruction lattice
does not affect the projections.

Let F i−1 be the reconstructed image from the previous iteration. As a
neighborhood of the point p = (xp, yp) ∈ A, we choose a square centered in
(xp, yp). The reason for preferring a square neighborhood over alternatives is
that the required computations can be performed very efficiently in this case.
Let p = (xp, yp) ∈ A. Let r be a positive integer, the neighborhood radius. Put

Np = { (x, y) ∈ A | xp − r ≤ x ≤ xp + r, yp − r ≤ y ≤ yp + r } . (9.34)

Np contains all pixels in the neighborhood of p, including p. In case p is
near the boundary of A, the set Np may contain fewer than (2r + 1)2 pixels.
Let sp be the number of pixels q ∈ Np for which F (p) = F (q). Define

fp =
sp
|Np|

. (9.35)

We call fp the similarity fraction of p. A high similarity fraction corresponds
to a smooth neighborhood of p.

Let g : [0, 1] → R>0 be a nondecreasing function, the local weight func-
tion. This function determines the preference for locally smooth regions. We
compute the pixel weight W (p) of p as follows:

W (p) = 2(F (p)− 1
2
)g(fp) . (9.36)

Note that 2(F (p)− 1
2 ) is either −1 or +1.

When we take g(f) = 1 for all f ∈ [0, 1], there is no preference for local
smoothness. To express the preference, we make the local weight function g an
increasing function of fp. Now a pixel having a value of 1 that is surrounded by
other pixels having the same value will obtain a higher weight than such a pixel
that is surrounded by 0-valued pixels. A higher weight expresses a preference
to retain the value of 1 in the next reconstruction. The same reasoning holds
for pixels having a value of 0, except that in this case the pixel weights are
negative. Three possible choices for the local weight function are
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(a) g(fp) = fp ,
(b) g(fp) =

√
fp ,

(c) g(fp) = f2
p .

The last choice results in a strong preference for pixels that are (almost)
perfectly smooth. Of course, many other local weight functions are possible.
In [3], extensive results are reported for the local weight function

g(fp) =

⎧⎪⎨⎪⎩
1 (fp ≤ 0.65) ,
4f (0.65 < fp < 1) ,
9 (fp = 1) .

(9.37)

The choice for this particular function is somewhat arbitrary. In each case,
a preference is expressed for retaining the pixel value of p in the next recon-
struction, instead of changing it. In the case that the whole neighborhood of
p has the same value as p, this preference is very strong. If the neighborhood
contains a few pixels having a different value, the preference is less. If there are
many pixels in the neighborhood that have a different value, the preference is
even smaller.

So far we have not discussed how the neighborhood radius should be cho-
sen. If the start solution is already a good approximation of the final recon-
struction, using a fixed value of r = 1 works well. For this neighborhood
radius, the differences between consecutive reconstructions F i are typically
small. It is usually better to start with a larger neighborhood radius, e.g.,
r = 5 or r = 8. This typically results in large changes between consecutive
reconstructions. Only very large regions of pixels that have the same value
obtain a strong preference to keep this value. Regions that are less smooth
can easily change. A choice that works well for the range of images studied in
[3] is to start the algorithm with r = 8 and to set r = 1 after 50 iterations.

9.6.3 Choosing the Pair of Directions

In each iteration of the main loop of the algorithm, a new pair of lattice
directions is selected. There is no selection scheme that is “obviously best”
in all cases. Yet there are several ways for choosing the direction pairs that
perform well in practice.

A good choice for the new direction pair is to choose the lattice directions
v(a), v(b), for which the total projection error

|P (a)
F − p(a)|1 + |P (b)

F − p(b)|1 (9.38)

is largest. After solving the new instance of Problem 2, the total projection
error for these two lattice directions will be zero, assuming perfect projection
data. This also guarantees that if at least two projections have a positive
projection error after the previous iteration, both new lattice directions will
be different from the ones used in the previous iteration.
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If the number of projections is very small (e.g., four or five) the projection
error is not a good criterion for selecting the new projection pair. For the case
of four projections, this scheme leads to cycling behavior between two pair
of projections. The other projection pairs are not used at all. To avoid this
behavior, it is better to use a fixed order of direction pairs, in which all pairs
occur equally often. Such schemes, for four and five projections, are shown in
Table 9.1.

Table 9.1. (left) Lattice Direction Scheme for Four Projections (Each projection
pair is used equally often. No projection pair is used in two consecutive iterations.)
(right) Lattice Direction Scheme for Five Projections

Iteration 1 2 3 4 5 6

1st dir. 1 3 1 2 1 2
2nd dir. 2 4 3 4 4 3

Iteration 1 2 3 4 5 6 7 8 9 10

1st dir. 1 3 5 2 4 1 2 3 4 5
2nd dir. 2 4 1 3 5 3 4 5 1 2

9.6.4 Stop Criterion

In general, it is not easy to determine when the iterative algorithm from
Fig. 9.6 should terminate, because there is no guaranteed convergence. Yet,
the experiments from [3] show that if enough projections are available, the
algorithm often converges to the exact solution of Problem 5. Detecting that
an exact solution has been found is easy, and the algorithm always terminates
in that case.

To measure the quality of the current reconstruction F , the total projection
difference

D(F ) =
n∑
k=1

|P (k)
F − p(k)|1 (9.39)

can be used. This distance is 0 for any perfect solution of Problem 5 and
greater than 0 otherwise. The total projection difference can be used for
defining termination conditions. If no new minimal value is found for the
total projection distance during the last T iterations, where T is a positive
integer, the algorithm terminates. We used T = 100 for all experiments in the
next subsection.

9.6.5 Some Results

We will now show some experimental results obtained by the iterative al-
gorithm from Fig. 9.6. The performance of the algorithm, as for any other
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general discrete tomography algorithm, depends heavily on the type of image
that is being reconstructed and the number of available projections. In order
to give extensive statistical results about the reconstruction quality, a class
of images has to be defined first. All images in this class should have simi-
lar characteristics. The performance of the algorithm can then be measured
for this particular image class. In [3], reconstruction results were reported
for several different image classes. The results in this section show a varied
set of test images with their reconstructions, rather than providing extensive
quantitative results. Figure 9.8 shows six test images, each having different
characteristics, and their reconstructions. The number n of projections that
was used is shown in the figure captions. The reconstructions of the first five
images (a–e) are all perfect reconstructions, obtained using the weight func-
tion in Eq.(9.37) from Section 9.6.2. For the first four images (a–d), the linear
local weight function also works very well, even faster than the function in
Eq.(9.37). The image in Fig. 9.8(e) contains many fine lines of only a single
pixel’s thickness. In this case, the local weight function g(fp) =

√
fp works

well. Which local weight function is best for a certain class of image depends
strongly on characteristics of the particular class. This is also true for the
number of projections required to reconstruct an image.

For reconstructing the image in Fig. 9.8(a), four projections suffice. The
structure of the object boundary is fairly complex, but the object contains no
“holes.” The iterative algorithm reconstructed the image perfectly from four
projections (horizontal, vertical, diagonal, and antidiagonal).

Figure 9.8(b) shows a much more complicated example. The object con-
tains many cavities of various sizes and has a very complex boundary. Some
of the black holes inside the white region are only a single pixel in size. In
this case, our algorithm requires six projections to compute an accurate re-
construction. Some of the fine details in this image are not smooth at all. Still,
the fine details are reconstructed with great accuracy. The image from Fig.
9.8(c) is even more complex. It requires eight projections to be reconstructed
perfectly.

The image in Fig. 9.8(d) has a lot of local smoothness in the black areas,
but it contains no large white areas. Still, the image is smooth enough to be re-
constructed perfectly from only five projections. This example also illustrates
that very fine, nonsmooth details can be reconstructed by the algorithm, as
long as the entire image is sufficiently smooth.

Figure 9.8(e) shows a vascular system containing several very thin vessels.
The iterative algorithm can reconstruct the original image perfectly from 12
projections. This is quite surprising, since the very thin vessels have a width
of only one pixel, so they are not smooth. Still, the smoothness of the thicker
vessels and the background area provides the algorithm with enough guidance
to reconstruct the original image.

When the image contains no structure at all, the algorithm performs very
badly. Figure 9.8(f) shows an image of random noise. The reconstruction from
12 projections shows that our algorithm has a preference for connected areas
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of white and black pixels. In this case, however, the smoothness assumption
is obviously not satisfied by the original image. The distance between the
projections of the image found by our algorithm and the prescribed projections
is very small, however.

(a) Original image. Reconstr., n = 4. (b) Original image. Reconstr., n = 6.

(c) Original image. Reconstr., n = 8. (d) Original image. Reconstr., n = 5.

(e) Original image. Reconstr., n = 12. (f) Original image. Reconstr., n = 12.

Fig. 9.8. Six original images and their reconstructions. The number n of projections
is shown in the figure caption. [The images in Fig. 9.8(f) show a zoomed portion of
the center of the actual images, to make the details clearly visible.]

For reconstructing the images in Fig. 9.8, a sufficiently large set of pro-
jections was used. Figures 9.9 and 9.10 demonstrate the result of using the
algorithm if too few projections are available.

Figure 9.9 shows the results of reconstructing the semiconductor image of
Fig. 9.3(b) from three and four projections, respectively. When we use only
three projections, a reconstruction is found that has exactly the prescribed
projections, but the reconstruction is very different from the original image.

If we use too few projections, the algorithm may also get stuck in a local
minimum of the projection distance, which is shown in Fig. 9.10. The original
image can be reconstructed perfectly from five projections, but when only
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four projections are used, the algorithm fails to find a good reconstruction.
The projections of the reconstructed image are significantly different from
the four prescribed projections, yet the algorithm is unable to find a better
reconstruction.

Original image. Reconstruction, n = 3. Reconstruction, n = 4.

Fig. 9.9. (a) Original image. (b) Reconstruction from three projections (horizontal,
vertical, diagonal) that has exactly the prescribed projections. (c) Perfect recon-
struction of the original image from four projections (horizontal, vertical, diagonal,
antidiagonal).

Original image. Reconstruction, n = 4. Reconstruction, n = 5.

Fig. 9.10. (a) Original image. (b) Reconstruction from four projections, which
does not have the prescribed projections. The horizontal and vertical projections are
identical to those of the first image. The diagonal and antidiagonal projections have
a total projection difference (sum of absolute values) of 184 and 126, respectively.
(c) Perfect reconstruction of the original image from five projections.

9.7 Reconstructing 3D Volumes

So far our approach has been concerned with the reconstruction of two-dimen-
sional images. In many practical applications of tomography, it is important to
obtain 3D reconstructions. Computing 3D reconstructions is usually a compu-
tationally very demanding task, as large amounts of data are involved. There
is a slight difference in terminology between 2D and 3D reconstructions. Pix-
els in 2D images are usually called voxels in the context of 3D images, where
they represent a unit cube in the 3D volume.
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If there exists a plane H in Z3 such that all projection directions lie in
H , all algorithms for 2D reconstruction can be used directly for 3D recon-
struction as well, reconstructing the volume as a series of slices. All slices can
be reconstructed in parallel, which allows for a large speedup if several pro-
cessors are used. A disadvantage of reconstructing all slices independently is
that certain types of prior knowledge cannot be exploited. For example, if we
generalize the preference for local smoothness from Section 9.6 to 3D, voxels
from adjacent slices are required to compute the neighborhood density of a
certain voxel. Therefore, the reconstruction computations of the slices are no
longer independent.

If the projection directions are not coplanar, reconstructing the volume
as a series of slices is not possible. This situation occurs, for example, in the
application of atomic resolution electron microscopy. The crystal sample is
tilted in two directions to obtain as many useful projections as possible.
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Fig. 9.11. 3× 3× 3 binary volume with its projections in directions v(1) = (1, 0, 0)
and v(2) = (0, 1, 0). A large circle indicates a value of 1; a small circle indicates a
value of 0.

We will now show how the algorithm for 2D reconstruction from the pre-
vious section can be generalized to the 3D case. Figure 9.11 shows an example
of a 3 × 3 × 3 volume A with its projections parallel to the lattice directions
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v(1) = (1, 0, 0) and v(2) = (0, 1, 0). Lattice points that have a value of 1 (i.e.,
lattice points included in the set F ) are indicated by large dots. Similar to
the associated network from Section 9.2, each two-projection problem in 3D
also has an associated graph. The associated graph for the volume in Fig.
9.11 is shown in Fig. 9.12. Just as in the 2D case, the associated graph con-
tains a line edge for every projected lattice line. The middle layer of edges
contains one edge for every voxel, connecting the two line nodes for which the
corresponding lines intersect with that voxel.

s

x = 0 x = 1 x = 2 x = 0 x = 1 x = 2 x = 0 x = 1 x = 2

y = 0 y = 1 y = 2 y = 0 y = 1 y = 2 y = 0 y = 1 y = 2

t

s

x = 0 x = 1 x = 2 x = 0 x = 1 x = 2 x = 0 x = 1 x = 2

y = 0 y = 1 y = 2 y = 0 y = 1 y = 2 y = 0 y = 1 y = 2

t

z = 2

z = 1

z = 0

2 3 1 2 2 2 1 1 3

2 2 2 3 1 2 2 2 1

prescribed linesum (vertical)

prescribed linesum (horizontal)

Fig. 9.12. Network corresponding to the two-projection reconstruction problem
in Fig. 9.11.

Figure 9.12 shows a nice property of the two-projection reconstruction
problem. For any point edge (n1,i, n2,j) ∈ Ep in the associated graph, the
lines �1,i and �2,j have a nonempty intersection in A, so there is a plane in Z3

that contains both �1,i and �2,j. Since �1,i and �2,j are translates of v(1) and
v(2), respectively, this plane will always be a translate of the plane spanned
by v(1) and v(2). If two lines �1,i and �2,i lie in different translates of this
plane, there will be no voxel edge connecting the corresponding line nodes.
Therefore, the max flow problem can be solved for each translate of the plane
independently. In the example network of Fig. 9.12, the subproblems for each
of the planes z = 0, z = 1, and z = 2 can be solved independently. This
property holds for any pair (v(a), v(b)) of lattice directions, although the sizes
of the subproblems depend on the direction pair. The number of point edges
in each subproblem is bounded by the maximal number of voxels in A that
lie in a single plane.
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(a) Cones pointing out, 128×128×128: perfect reconstruction from 4 projections.

(b) Random cones, 128×128×128: perfect reconstruction from 6 projections.

(c) 100 spheres, 169×169×169: perfect reconstruction from 6 projections.

(d) 1000 small spheres, 139×139×139: perfect reconstruction from 6 projections.

Fig. 9.13. Reconstruction results for four 3D volumes.
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Figure 9.13 shows four different test volumes, each displayed from three
different viewing directions. The directions were selected to provide a clear
view of the volume; they are not parallel to any of the projection directions.
The iterative network flow algorithm can reconstruct each of these images from
projections along the six lattice directions (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0),
(1, 0, 1), and (0, 1, 1). The image dimensions are shown in the figure. For the
test image in Fig. 9.13(a), a perfect reconstruction is already found if only the
first four projections are used. The test volumes are surrounded by a black
background, which is not counted in the image dimensions. For all four test
volumes, the algorithm computed the 3D reconstruction within 7 minutes on
a standard 2.4GHz Pentium IV PC.

9.8 Extension to Plane Sets

So far we have considered the reconstruction of lattice sets in 2D and 3D. This
model is well suited for the application of nanocrystal reconstruction at atomic
resolution in electron microscopy [16]: Atoms in a crystalline solid are arranged
regularly in a lattice structure. In many other applications of tomography
there is no “intrinsic lattice.” In this section, we consider the reconstruction
of subsets of R2 from its projections in a small number of directions. We
will also refer to such subsets as planar black-and-white images. In this new
context, the projection along a line is no longer a sum over a discrete set;
rather it is a line integral or strip integral of a function R2 → {0, 1}, which
yields a real value.

Binary tomography problems without an intrinsic lattice structure occur
often in practice, for example, in medical imaging [14]. Besides using a pixel
representation for the reconstructed image, other representations have also
been proposed. If the object of interests can be approximated well by a poly-
gon, for example, one can use a polygonal, representation in the reconstruction
algorithm (see [18]).

The iterative network flow algorithm can be adapted in such a way that it
can be used for the reconstruction of planar black-and-white images. We will
only give a high-level overview of the algorithm. The details will be described
in a future publication.

Figure 9.14 shows an example of a planar black-and-white image along
with two of its projections. If strip projections are used, the total amount
of “white” (or black) in a set of consecutive strips parallel to the projection
direction is measured. As it is impossible to represent all planar images in a
computer program, they are approximated by representing the images on a
pixel grid. Each of the pixels can have a value of either 1 (white) or 0 (black).

The weighted reconstruction problem for two projections (i.e., Problem
2 in the context of lattice sets) can also be solved efficiently in the case of
planar subsets. However, a specifically chosen pixel grid must be used, which
depends on the two projection directions. Figure 9.15 shows how the grid is
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Fig. 9.14. A planar black-and-white image with one of its projections. If strip
projections are used, the total amount of “black” in a set of consecutive strips
parallel to the projection direction is measured.

formed from two projections. Every pixel on the grid is the intersection of a
strip in the first direction with a strip in the second direction. The network
flow approach can be used for this pixel grid, to compute a 0–1 reconstruction
from the given two projections.

Fig. 9.15. Two parallel beams span a pixel grid. On this pixel grid, network flow
methods can be used to solve the two-projection 0–1 reconstruction problem.
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In every iteration of the iterative network flow algorithm, a new pair of
projections is selected. Therefore, the pixel grid on which the new solution is
computed is different in each iteration. To compute the weight map for the new
pixel grid, the image from the previous iteration (defined on a different pixel
grid) is first converted to a grayscale image on the pixel grid by interpolation.
Recall that the computation of the similarity fraction for a pixel p does not
require that neighboring pixels of p are binary. Therefore, the new weight
map can be computed in a straightforward way. An overview of the adapted
version of the iterative algorithm is shown in Fig. 9.16.

Compute the start solution F 0 on the standard pixel grid;

i := 0;

while (stop criterion is not met) do
begin

i := i+ 1;

Select a new pair of directions v(a) and v(b) (1 ≤ a < b ≤ n);
Convert the previous solution F i−1 to an image F̂ i−1 that is defined

on the pixel grid spanned by directions v(a) and v(b);

Compute a new weight map W i from the image F̂ i−1;

Compute a new solution F i on the grid spanned by v(a) and v(b)

by solving a variant of Problem 4, using the weight map W i.

end

Fig. 9.16. Basic steps of the algorithm for plane sets.

Just as for lattice images, the iterative network flow algorithm for plane
sets is capable of computing very accurate reconstructions if a sufficient num-
ber of projections is available. However, if the original image does not have
an intrinsic lattice structure, we cannot expect a reconstruction that perfectly
matches the projection data, as it is unlikely that the original image can be
represented as a binary image on the pixel grid used by the algorithm.
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