Project work

Solve the following problems and upload your solutions on the course site.

Problem 1 Let $R = [0, 4] \times [0, 3]$ be the picture region with an $m \times n$ uniform partition, where m = 3 and n = 4. Consider the following line set:

- The lines l_1, l_2, l_3, l_4 are parallel to the vector $\underline{v}_1 = (0, 1)$ and passing through the points $P_{1,1} = (\frac{1}{2}, 0), P_{1,2} = (\frac{3}{2}, 0), P_{1,3} = (\frac{5}{2}, 0), P_{1,4} = (\frac{7}{2}, 0)$ respectively.
- The lines l_5, l_6, l_7 are parallel to the vector $\underline{v}_2 = (1, 0)$ and passing through the points $P_{2,1} = (0, \frac{5}{2}), P_{2,2} = (0, \frac{3}{2}), P_{2,3} = (0, \frac{1}{2})$ respectively.
- The lines $l_8, l_9, l_{10}, l_{11}, l_{12}$ are parallel to the vector $\underline{v}_3 = (1, 2)$ and passing through the points $P_{3,1} = (-1, 0), P_{3,2} = (0, 0), P_{3,3} = (1, 0), P_{3,4} = (2, 0), P_{3,5} = (3, 0)$ respectively.

The line integrals of an unknown function f along lines l_k for k = 1, 2, ..., 12are

- (a) Find all the possible values $x_{i,j}$, such that the function g, which takes the constant value $x_{i,j}$ on the pixel $R_{i,j}$ for all i = 1, 2, 3 and j = 1, 2, 3, 4, has the line integrals along the lines l_k equal to m_k for all $k = 1, 2, \ldots 12$.
- (b) Which are the non-negative solutions?
- (c) Find the non-negative solutions whose values are not larger than 1.
- (d) Which are the binary solutions?

Problem 2 Give a binary solution of the first problem if only the measurements along the lines l_1, l_2, l_3, l_4 and l_5, l_6, l_7 are known. This is equivalent to find binary matrix of size 3×4 with the row sum vector R = (2, 2, 2) and column sum vector S = (1, 2, 2, 1). Is the solution unique?

Problem 3 Give a binary solution of the first problem if only the measurements along the lines l_1, l_2, l_3, l_4 and $l_8, l_9, l_{10}, l_{11}, l_{12}$ are known. Use the network flow algorithm.