Project work

Solve the following problems and upload your solutions on the course site.

Problem 1 Let $R=[0,4] \times[0,3]$ be the picture region with an $m \times n$ uniform partition, where $m=3$ and $n=4$. Consider the following line set:

- The lines $l_{1}, l_{2}, l_{3}, l_{4}$ are parallel to the vector $\underline{v}_{1}=(0,1)$ and passing through the points $P_{1,1}=\left(\frac{1}{2}, 0\right), P_{1,2}=\left(\frac{3}{2}, 0\right), P_{1,3}=\left(\frac{5}{2}, 0\right), P_{1,4}=$ $\left(\frac{7}{2}, 0\right)$ respectively.
- The lines l_{5}, l_{6}, l_{7} are parallel to the vector $\underline{v}_{2}=(1,0)$ and passing through the points $P_{2,1}=\left(0, \frac{5}{2}\right), P_{2,2}=\left(0, \frac{3}{2}\right), P_{2,3}=\left(0, \frac{1}{2}\right)$ respectively.
- The lines $l_{8}, l_{9}, l_{10}, l_{11}, l_{12}$ are parallel to the vector $\underline{v}_{3}=(1,2)$ and passing through the points $P_{3,1}=(-1,0), P_{3,2}=(0,0), P_{3,3}=(1,0)$, $P_{3,4}=(2,0), P_{3,5}=(3,0)$ respectively.

The line integrals of an unknown function f along lines l_{k} for $k=1,2, \ldots, 12$ are

$$
\begin{aligned}
& m_{1}=1, \quad m_{2}=2, \quad m_{3}=2, \quad m_{4}=1, \\
& m_{5}=2, \quad m_{6}=2, \quad m_{7}=2 \text {, } \\
& m_{8}=\frac{\sqrt{5}}{2}, m_{9}=0, m_{10}=\frac{3 \sqrt{5}}{2}, m_{11}=\frac{\sqrt{5}}{2}, m_{12}=\frac{\sqrt{5}}{2} .
\end{aligned}
$$

(a) Find all the possible values $x_{i, j}$, such that the function g, which takes the constant value $x_{i, j}$ on the pixel $R_{i, j}$ for all $i=1,2,3$ and $j=1,2,3,4$, has the line integrals along the lines l_{k} equal to m_{k} for all $k=1,2, \ldots 12$.
(b) Which are the non-negative solutions?
(c) Find the non-negative solutions whose values are not larger than 1.
(d) Which are the binary solutions?

Problem 2 Give a binary solution of the first problem if only the measurements along the lines $l_{1}, l_{2}, l_{3}, l_{4}$ and l_{5}, l_{6}, l_{7} are known. This is equivalent to find binary matrix of size 3×4 with the row sum vector $R=(2,2,2)$ and column sum vector $S=(1,2,2,1)$. Is the solution unique?

Problem 3 Give a binary solution of the first problem if only the measurements along the lines $l_{1}, l_{2}, l_{3}, l_{4}$ and $l_{8}, l_{9}, l_{10}, l_{11}, l_{12}$ are known. Use the network flow algorithm.

